Действительных корней нет.
Комплексные корни:
Объяснение:
Приводим подобные слагаемые:
Это обычное квадратное уравнение. Решим через дискриминант.
Дискриминант меньше нуля, следовательно действительных корней нет.
Найдем комплексные корни.
Теория:
Стандартный вид квадратного уравнения ,
Дискриминант
Если , то квадратное уравнение имеет два действительных корня.
Если , то квадратное уравнение имеет один действительных корень.
Если , то квадратное уравнение не имеет действительных корней, однако комплексные корни существуют.
Комплексное число - число вида , где - действительные числа, - мнимая единица.
Мнимая единица - число, для которого выполняется
Действительных корней нет.
Комплексные корни:
Объяснение:
Приводим подобные слагаемые:
Это обычное квадратное уравнение. Решим через дискриминант.
Дискриминант меньше нуля, следовательно действительных корней нет.
Найдем комплексные корни.
Теория:
Стандартный вид квадратного уравнения
, ![a \neq 0](/tpl/images/1377/2494/21883.png)
Дискриминант![D = b^2 - 4*a*c](/tpl/images/1377/2494/6a2ec.png)
Если
, то квадратное уравнение имеет два действительных корня.
Если
, то квадратное уравнение имеет один действительных корень.
Если
, то квадратное уравнение не имеет действительных корней, однако комплексные корни существуют.
Комплексное число - число вида
, где
- действительные числа,
- мнимая единица.
Мнимая единица
- число, для которого выполняется ![i^2=-1](/tpl/images/1377/2494/45265.png)