1) Установить соответствие:
Угол ABC опирается на дугу ADC
Угол DEF опирается на дугу DCF
Угол AGF опирается на дугу ACF
2) Условно примем, что хорда АВ разделилась на отрезки АМ=25 см и ВМ=36 см. Тогда отношение частей хорды CD будет равно СМ/MD=1/4. Отрезки двух хорд связаны: произведение отрезков одной хорды равно произведению отрезков другой хорды.
Примем за х одну часть. Тогда СМ будет равен х, а MD - 4х. Составляем уравнение:
25*36=х*4х
900=4х^2
х^2=900/4
х^2=225
х=15
Находим 4х:
4*15=60 см.
Длина второй хорды равна 15+60=75 см. Следовательно, верный ответ 4 - 75 см.
3) Верный высказывания: 2 и 3.
Второе высказывание верно, потому что при делении числа на два не может быть двух разных результатов.
Третье высказывание верно, потому что градусная мера полуокружности равна 180 градусам, а вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, вписанный угол, опирающийся на полуокружность, будет равен 180/2=90 градусов.
4) Определение вписанного угла: угол, стороны которого пересекают окружность, а вершина лежит на окружности, является вписанным. Следовательно, нужными пунктами будут 1 и 5.
5) Вписанными углами будут являться углы под номерами 1, 2 и 5.
6) Угол ABC - вписанный, значит градусная мера дуги, на которую он опирается, будет равна удвоенной градусной мере угла: 44*2=88 градусов.
Также указано, что дуга AB равна 92 градуса. Учитывая то, что вся окружность равняется 360 градусам, составляем уравнение:
Дуга BC=360-(88+92)
Дуга BC=360-180
Дуга ВС=180 градусов.
7) Из рисунка видно, что BC - это диаметр, следовательно, дуга BAC будет равна 180 градусов. Известно, что часть дуги ВАС - дуга ВА равна 100 градусам, значит вторая часть - дуга АС будет равна 180-100=80 градусов.
Угол ABC - вписанный, значит его градусная мера равна половине градусной меры дуги, на которую он опирается: 80/2=40 градусов.
8) Дуги АВ и ВС соприкасаются в точке В, значит дуга АВ+дуга ВС=дуга АВС; 152+80=232 градусов.
Дуга АС равна 360- 232= 128 градусов.
Угол AВС - вписанный, значит его градусная мера равна 128/2=64 градуса.
1.
а) (3y - 2)(3y + 2) = 9y² - 4
б) (3y - 1)² = 9y² - 6y + 1
в) (4a + 3k)(4a - 3k) = 16a² - 9k²
2.
(b-8)² - (64 - 6b) = b² - 16b + 64 - 64 + 6b = b² - 10b = b(b - 10)
3.
a) 25 - y² = (5 - y)(5 + y)
б) a² - 6ab + 9b² = a² - 2×1×3ab + (3b)² = (a - 3b)²
4.
36 - (6 - x)² = x(2,5 - x)
36 - (36 - 12x + x²) = 2,5x - x²
12x + x² = 2,5x - x²
2x² + 9,5x = 0
x(2x + 9,5) = 0
x = 0 или 2x = -9,5
x = 0 или x = -4,75
ответ: 0; -4,75
5.
а) (c² - 3a)(3a - c²) = -(3a - c²)(3a - c²) = -(3a-c²)²
б) (3x + x³)² = 9x² + 6x⁴ + x⁶
в) (3 - k)²(k+3)² = (3 - k)²(3+k)² = [(3-k)(3+k)]² = (9 - k²)²
6.
а) (3x - 2)² - (3x - 4)(4 + 3x) = 0
(3x - 2)² + (4 + 3x)² = 0
9x² - 12x + 4 + 16 + 24x + 9x² = 0
12x + 20 = 0
12x = -20
3x = -5
x = -5/3
б) 25y² - 64 = 0
y² = 64/25
y = ± 8/5
7.
а) 36a⁴ - 25a²b² = a²(36a² - 25b²) = a²(6a - 5b)(6a + 5b)
б) (x - 7)² - 81 = (x - 7 - 9)(x - 7 + 9) = (x - 16)(x + 2)