М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Мышастик
Мышастик
03.06.2023 15:12 •  Алгебра

Выберите правильный ответ.
Представьте выражение в виде многочлена с(с + 8х)^2
с + 16c^2x+ 64сх^2

с^2 + 16cx + 64cх^2

с^3 + 16c^2x+ 8cх^2

👇
Ответ:
1064738193747
1064738193747
03.06.2023

c(c²+16xc+65x²)=c³+16xc²+64x²c

Правильный ответ 3 выражение

4,6(50 оценок)
Открыть все ответы
Ответ:
esmirakagraman
esmirakagraman
03.06.2023
Вспомним предназначение и смысл формул сокращенного умножения. Ранее мы изучали и повторили достаточно трудоемкую операцию умножения многочленов, ее сложность заключается в том, что многочлен – это сумма одночленов, и для умножения нужно каждый член первого многочлена умножить на каждый член второго многочлена. В результате получаем достаточно большой многочлен, который нужно привести к стандартному виду. Формулы сокращенного умножения как раз упрощают операцию умножения многочленов.Приведем некоторые формулы: – квадрат суммы (разности); – разность квадратов; – разность кубов; – сумма кубов;                            называют неполным квадратом суммы;                              называют неполным квадратом разности;Отличие последних двух выражений от полного квадрата состоит в том, что в полном квадрате есть удвоенное произведение выражений, а в неполном – просто их произведение.
4,8(48 оценок)
Ответ:
stepnikitka
stepnikitka
03.06.2023
Найдите целые отрицательные  решения неравенств:
1) x^4-4x^2\ \textless \ 0
Рассмотрим функцию f(x)=x^4-4x^2
Её область определения: D(f)=(-\infty;+\infty)

Приравниваем функцию к нулю:
f(x)=0;\,\,\,\,\, x^4-4x^2=0\\ x^2(x^2-4)=0
Произведение равно нулю, если один из множителей равен нулю
\left[\begin{array}{ccc}x^2=0\\x^2-4=0\end{array}\right\Rightarrow \left[\begin{array}{ccc}x_1=0\\ x_2_,_3=\pm 2\end{array}\right

На интервале найдем решение неравенства

_+___(-2)___-___(0)___-___(2)___+___
Решением неравенства есть промежуток - x \in (-2;0)\cup(0;2)

Целое отрицательное число из промежутка: -1

ответ: -1.

2) 27-3x^2 \geq 0|\cdot(-1)
При умножении неравенства на отрицательное число, знак неравенства меняется на противоположный

-27+3x^2 \leq 0\\ 3x^2 \leq 27|:3\\ x^2 \leq 9\\ \\ |x| \leq 3\\ \\ -3 \leq x \leq 3

Целые отрицательные числа промежутка: -3; -2; -1.

ответ: -3; -2; -1.

3) \dfrac{x^2-x-2}{x^2} \ \textless \ 0
Рассмотрим функцию
  f(x)= \dfrac{x^2-x-2}{x^2}
Область определения:
 x\ne 0
D(f)=(-\infty;0)\cup(0;+\infty)
Приравниваем функцию к нулю:
f(x)=0;\,\,\,\, \dfrac{x^2-x-2}{x^2} =0
Дробь обращается в 0 тогда, когда числитель равен нулю
x^2-x-2=0
По т. Виета: x_1=-1;\,\,\,\,\, x_2=2

Найдем решение неравенства
  ___+___(-1)___-____(0)____-__(2)____+____
x \in (-1;0)\cup(0;2) - решение неравенства

Целых  отрицательных чисел - НЕТ

ответ: целых отрицательных чисел нет

4) \dfrac{x^2+x}{x^2-3} \leq 0
Рассмотрим функцию
   f(x)= \dfrac{x^2+x}{x^2-3}
Область определения функции:
  x^2-3\ne 0\,\,\,\, \Rightarrow\,\,\,\,\,\, x\ne\pm \sqrt{3}

D(f)=(-\infty;- \sqrt{3} )\cup(- \sqrt{3} ; \sqrt{3} )\cup( \sqrt{3} ;+\infty)

Приравниваем функцию к нулю
  \dfrac{x^2+x}{x^2-3} =0
Дробь обращается в нуль, если числитель равен нулю
x^2+x=0\\ x(x+1)=0\\ \left[\begin{array}{ccc}x=0\\ x+1=0\end{array}\right\Rightarrow \left[\begin{array}{ccc}x_1=0\\ x_2=-1\end{array}\right

Вычислим решение неравенства:
  __+___(-√3)__-__[-1]__+___[0]___-__(√3)__+____
Решение неравенства: x \in (- \sqrt{3} ;-1]\cup[0;\sqrt{3} )

Целые отрицательные решения : -1

ответ: -1.
4,8(83 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ