М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DSK111
DSK111
04.02.2020 05:42 •  Алгебра

Відомо що корінь 8+а+корінь 3-а=4.Знайдіть значення виразу корінь(8+а)(3-а)

👇
Открыть все ответы
Ответ:
Alekseimiller
Alekseimiller
04.02.2020
1) 6*3-5*2=18-10=8 2)  15b3 - 3=3(15b-1)3)  4c2 + 2c + 4 + 6c=4c*2+8c+4=4(c*2+2c+1)=4(2c+2c+1)=4(4c+1)4)  а) 2х3 + 4х2 - 8х - 16 = 0        6+8-8x-16=0        -2-8x=0        -8x=2        x=дробь -2 на 8        x=дробь -1 на 4        x=-0.255)  б) 6х2 - 2х = 0.3        12-2x=0          -2x=-12          x=66)  4cd32cd    (4*32)*(c*c)*(d*d)    128*(с^1*c^1)*(d^1*d^1)    128c^1+1d^1+1    128c^2d^2удачи здесь всё правильно!          
4,4(3 оценок)
Ответ:
Nemesis1984
Nemesis1984
04.02.2020

8sin^2x + 2\sqrt{3}cosx + 1 = 0\\8(1-cos^2x) + 2\sqrt{3}cosx + 1 = 0\\8 - 8cos^2x + 2\sqrt{3}cosx + 1 = 0\\8cos^2x - 2\sqrt{3}cosx - 9 = 0\\\frac{D}{4} = 3 + 72 = 75 = (5\sqrt{3})^2\\cosx = \frac{\sqrt{3}\pm5\sqrt{3}}{8};\\

Так как функция косинус по модулю не превосходит единицы в поле действительных чисел, то выбираем cosx = -\frac{\sqrt{3}}{2}

Далее решаем это уравнение:

x = \pm arccos(\frac{-\sqrt{3}}{2}) + 2\pi k\\x = \pm \frac{5\pi}{6} + 2\pi k, k \in Z

По условию нужно найти корни на промежутке [-\frac{7\pi}{2}; -2\pi].

Это можно сделать несколькими например, с неравенства:

-\frac{7\pi}{2} \leq \pm \frac{5\pi}{6} + 2\pi k \leq-2\pi\\-21 \leq \pm 5 + 12k \leq -12

Рассмотрим случай, когда 5 имеет знак "плюс":

-21 \leq 5 + 12k \leq -12\\-26 \leq 12k \leq -17\\-\frac{13}{6} \leq k \leq -\frac{17}{12}

Очевидно, что из целых k подходит k = -2.

Теперь рассмотрим случай, когда 5 имеет знак "минус":

-21 \leq -5 + 12k \leq -12\\-16 \leq 12k \leq -7\\-\frac{4}{3} \leq k \leq -\frac{7}{12}

k = -1 нам подходит.

Теперь подставляем полученные k в серию корней:

1) Когда плюс - k = -2, т. е. x = \frac{5\pi}{6} - 4\pi = -\frac{19}{6}\pi

2) Когда минус - k = -1, т. е. x = -\frac{5\pi}{6} -2\pi = -\frac{17\pi}{6}

ответ: а) x = \pm \frac{5\pi}{6} + 2\pi k, k \in Z

           б) -\frac{17\pi}{6}\\-\frac{19\pi}{6}

4,6(13 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ