1) (x+5)(x+2) > 0;
Для начала обозначим на координатной прямой нули ф-ции f(x) = (x+5)(x+2)
x + 5 = 0, x = -5
x + 2 = 0, x = -2
(смотри рисунок)
Точки исключенны так как строго >.
Найдем знак этой ф-ции на каждом из промежутков:
(-∞; -5) - берем например -10. Подставим в наше неравенство. Имеем:
(-10 + 5)(-10 + 2) = (-5) * (-8),
Тоесть там и там отрицательное но когда умножим дасть положительное число, тоесть 40.
Значит на прмежутке (-∞; -5) знак положительной.
(-5; -2) - аналогично. Берем например -3.Подставим:
(-3 + 5)(-3 + 2) = 2 * (-1) = -2 - отрицательное. Значит на промежутке (-5; -2) знак отрицательной.
(-2; +∞). Берем например 0:
(0 + 5)(0 + 2) = 5 * 2 = 10
Значит на промежутке (-2; +∞) знак положительный.
Поскольку У нас неравенство > то берем промежутки с положительным знаком.
ответ: (-∞; -5) U (-2; +∞)
2) (x+1)(x-4) ≤ 0;
Найдем нули ф-ции:
х + 1 =0, х = -1
х - 4 = 0, х = 4
Точки включены (зарисованые)
на промежутке (-∞; -1] - положительный знак
на пр-ке [-1; 4] - отрицательный
на пр-ке [4; +∞) - положительной.
Поскольке ≤, то ответ: [-1; 4]
3)
точку 7 - включить, а точку -8 - исключить
Смотри рисунок.
(-∞; -8) - "+"
(-8; 7] - "-"
[7; +∞) - "+"
ответ: (-8; 7]
4)
Точка -6 - включить; точку 10 - исключить
(∞; -6] - "+"
[-6;10) - "-"
(10; +∞) - "+"
ответ: (∞; -6] U (10; +∞)
5) (x-1) x (x+3)> 0;
x = 1
x = 0
x = -3
Все точки исключены.
(-∞; -3) - "-"
(-3; 0) - "+"
(0; 1) - "-"
(1; +∞) - "+"
ответ: (-3; 0) U (1; +∞)
6) x(x+2)(x-3) > 0
x = 0
x = -2
x = 3
Все точки исключены.
(-∞; -2) - "-"
(-2; 0) - "+"
(0; 3) - "-"
(3; +∞) - "+"
ответ: (-2; 0) U (3; +∞)
7)
Все точки исключены.
(-∞; -1) - "-"
(-1; 0) - "+"
(0; 0,5) - "-"
(0,5; +∞) - "+"
ответ: (-1; 0) U (0,5; +∞)
8)
Точки 0 и -1/3 - включать, а точку 2 - нет.
(-∞; -1/3] - "-"
[-1/3; 0] - "+"
[0; 2) - "-"
(2; +∞) - "+"
ответ: (-∞; -1/3] U [0; 2)
1)При х=2 у= -3
2)у=9 при х= -1
3)не проходит
1)Согласно графика, при х=3 у=5
2)Согласно графика, у= -3 при х= -1
3)Координаты пересечения графиком оси Оу (0; -10)
Координаты пересечения графиком оси Ох (4; 0)
Объяснение:
1. Функция задана формулой у = - 4х + 5.
Не выполняя построения графика, определите:
1) значение функции, если значение аргумента равно 2;
х=2
у = - 4х + 5
у= -4*2+5= -8+5
у= -3
При х=2 у= -3
2) значение аргумента, при котором значение функции равно 9;
у=9
у = - 4х + 5
9= -4х+5
4х=5-9
4х= -4
х= -1
у=9 при х= -1
3) проходит ли график функции через точку А(3; - 6).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
А(3; - 6) у = - 4х + 5
-6= -4*3+5
-6≠ -7, не проходит.
2. Постройте график функции у = 2х – 1.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у -3 -1 1
Пользуясь графиком , найдите:
1) значение функции, если значение аргумента равно 3;
Согласно графика, при х=3 у=5.
2) значение аргумента, при котором значение функции равно - 3;
Согласно графика, у= -3 при х= -1.
3. Не выполняя построения графика, найдите координаты точек пересечения графика функции у = 2,5х - 10 с осями координат.
График пересекает ось Оу при х=0:
х=0
у=0-10
у= -10
Координаты пересечения графиком оси Оу (0; -10)
График пересекает ось Ох при у=0:
у=0
0=2,5х-10
-2,5х= -10
х= -10/-2,5
х=4
Координаты пересечения графиком оси Ох (4; 0)