Допустим, что . Тогда имеем уравнение
, не имеющее решений, поскольку в левой части число неположительное, а в правой - положительное, т.е. левая часть никак не может быть равна правой. Т.е.
Преобразуем правую часть:
Перенесем все влево с противоположным знаком:
Поскольку , можем разделить обе части уравнения на
. В итоге имеет равносильное исходному уравнение
Заметим, что является корнем уравнения относительно тангенса. Тогда по теореме Виета второй корень равен
.
Соответственно, имеем два случая: или или
.
1 случай.
2 случай.
Имеем две серии корней.
ОТВЕТ: π/4 + πk, k ∈ Z; -arctg(1/4) + πn, n ∈ Z.
Объяснение:
Дана функция у=х-8
Уравнение линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у -9 -8 -7
Можно определить координаты точки пересечения с осью Oх путём придания у значения 0, значение х в этом случае х=8
у=х-8 0=х-8 -х= -8 х=8
Координаты точки пересечения (8; 0)