Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
На 28%.
На скольо % была снижена цена товара?
Объяснение:
1)100-10=90% цена товара после первого
понижения (в %).
2)
Пусть первоначальная цена товара бы
ла х руб.
Составим пропорцию:
х 100%
? 90%
?=90х/100=0,9х
3)100-20=80% цена товара после второ
го понижения (в %).
4)
Составим пропорцию:
0,9х 100%
? 80%
?=(0,9х×80)/100=0,72х - цена товара
после второго понижения ( в руб.)
5)
Составим пропорцию:
х 100%
0,72х ?
?=(0,72х×100)/х=72(%) цена тавара
после двух понижений по отноше
нию к первоначальной цене (в %).
6)100-72=28(%) снижение цены пос
ле двух понижений.
ответ: на 28%.
.