Итак, если уравнение вида 1) ах^2+вх=0, т.е. с=0, то для решения выносим за скобки х: х(ах+в) =0. Произведение равно равно нулю, если хотя бы один из множителей равен нулю. Получаем: х=0 или ах+в=0 х=0 или х=-в/а - искомые решения. 2) ах^+с=0, т. е. в=0, то имеем два случая: а) а и с - одного знака: уравнение в этом случае решений не имеет, т.к. для любого х ах^2+с>0. б) а и с - разных знаков: используем формулу разность квадратов Произведение равно нулю, если хотя бы один из множителей равен нулю, т. е. Откуда, х=-√с/√а или х=√с/√а - искомые решения.
Пусть l метров в час - скорость бурения 3 скважины, а t - время, через которое её глубина стала равной глубине второй скважины. Так как последняя равна 1*t=t метров в час, то получаем уравнение l*(t-1)=t. По условию, l*(t-1+1,5)=l*(t+0,5)=2*(t+1,5). Из первого уравнения находим l=t/(t-1). Подставляя это выражение во второе уравнение, получаем уравнение t(t+0,5)/(t-1)=(t²+0,5*t)/(t-1)=2t+3, или t²+0,5*t=(2t+3)(t-1), или t²+0,5*t=2t²+t-3, или t²+0,5t-3=0, или 2t²+t-6=0. Дискриминант D=1²-4*2*(-6)=49=7². Отсюда t=(-1+7)/4=1,5 часа, а l=t/(t-1)=1,5/0,5=3 метра в час. ответ: 3 метра в час.
1) ах^2+вх=0, т.е. с=0, то для решения выносим за скобки х:
х(ах+в) =0.
Произведение равно равно нулю, если хотя бы один из множителей равен нулю.
Получаем:
х=0 или ах+в=0
х=0 или х=-в/а - искомые решения.
2) ах^+с=0, т. е. в=0, то имеем два случая:
а) а и с - одного знака: уравнение в этом случае решений не имеет, т.к. для любого х ах^2+с>0.
б) а и с - разных знаков: используем формулу разность квадратов
Произведение равно нулю, если хотя бы один из множителей равен нулю, т. е.
Откуда,
х=-√с/√а или х=√с/√а - искомые решения.