Подскажите формулы, по которым можно найти ускорение/мгновенную и среднюю скорость движения точки в момент времени t. Тема "Определение производной". Формулы и пояснения, желательно кратко и понятно, что к чему относится. Заранее
Х - скорость второго велосипедера (х+3) - скорость первого 120/х - время на дорогу первого 120/(х+3) - время на дорогу второго Время1 = время второго + 2 часа
120/х = 120/(х+3) +2 приводим к общему знаменателю х(х+3), переносим все в одну сторону, числитель приравниваем к 0, т.к. знаменатель не может быть равен нулю
120(х+3) - 120х - 2х(х+3) = 0 -2х²-6х+360=0 (поделим обе части ур-я на -2, для удобства) х² + 3х - 180=0 Д= 9 -4*(-180) = 729 √Д =27 х = (-3 +-27)/2 = -15, 12 -15 не подходит, т.к. скорость не может быть отрицательной
х=12 - скорость 2-го велосипедера, 12+3 = 15 - скорость 1-го
Ищем общее решение однородного уравнения y'' - 3y' = 0 в виде y = exp(λx). Подставляя, получаем характеристическое уравнение λ^2 - 3λ = 0, откуда λ = 0 или λ = 3. Общее решение однородного уравнения yo = A + Bexp(3x).
Решение неоднородного уравнения ищем в виде y1 = ax^3 + bx^2 + cx + d. Подставляем: 6ax + 2b - 9ax^2 - 6bx - 3c = 9x^2 + 1 Приравнивая коэффициенты при равных степенях, получаем -9a = 9 6a - 6b = 0 2b - 3c = 1
a = -1 b = -1 c = -1
В качестве частного решения можно взять y1 = -x^3 - x^2 - x.
Общее решение неоднородного уравнения - сумма частного решения неоднородного уравнения и общего решения однородного.
(х+3) - скорость первого
120/х - время на дорогу первого
120/(х+3) - время на дорогу второго
Время1 = время второго + 2 часа
120/х = 120/(х+3) +2
приводим к общему знаменателю х(х+3), переносим все в одну сторону, числитель приравниваем к 0, т.к. знаменатель не может быть равен нулю
120(х+3) - 120х - 2х(х+3) = 0
-2х²-6х+360=0 (поделим обе части ур-я на -2, для удобства)
х² + 3х - 180=0
Д= 9 -4*(-180) = 729
√Д =27
х = (-3 +-27)/2 = -15, 12
-15 не подходит, т.к. скорость не может быть отрицательной
х=12 - скорость 2-го велосипедера, 12+3 = 15 - скорость 1-го