1.
1) По условию ВМ=MD=14 см , где ВМ - высота параллелограмма АВCD.
2) AM+MD=AD
8см + 14см = 22см - длина стороны AD.
3) S = AD · ВМ - площадь параллелограмма АВCD.
22см · 14см = 308 см²
ответ: 308 см²
2.
Дано:
S = 12см²
ВК⊥AD
ВК = 2см
BM⊥DC
ВМ =3 см.
P=?
Решение.
1) S = AD · ВК - площадь параллелограмма.
AD = S : ВК
AD = 12 : 2 = 6 см - одна сторона параллелограмма.
2) S = DC · ВM - площадь параллелограмма.
DC = S : ВM
DC = 12 : 3 = 4 см - вторая сторона параллелограмма.
3) Р = 2· (AD+DС) - периметр параллелограмма.
Р = 2 · (6 + 4) = 20 см
ответ: 20 см.
3.
Дано:
Ромб QRMN
∠QRM = 60°
QD⊥RM
RD = 6
S=?
Решение.
1) ΔQRD - прямоугольный треугольник.
∠RQD = 90°- 60° = 30°
2) Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
RD = QR => QR = 2RD
QR = 2 · 6 = 12см
QR=RM=MN=NQ - как стороны ромба.
3) По теореме Пифагора в прямоугольном треугольнике
RD²+DQ²=QR² => DQ²=QR² - RD²
DQ²=12² - 6²=144-36=108
DQ = √108 = 6√3 см - высота ромба
4) S = RM · DQ - площадь ромба
S = 12 · 6√3 = 72√3 ≈ 125
ответ: 72√3 см² или 125 см²
1) Установить соответствие:
Угол ABC опирается на дугу ADC
Угол DEF опирается на дугу DCF
Угол AGF опирается на дугу ACF
2) Условно примем, что хорда АВ разделилась на отрезки АМ=25 см и ВМ=36 см. Тогда отношение частей хорды CD будет равно СМ/MD=1/4. Отрезки двух хорд связаны: произведение отрезков одной хорды равно произведению отрезков другой хорды.
Примем за х одну часть. Тогда СМ будет равен х, а MD - 4х. Составляем уравнение:
25*36=х*4х
900=4х^2
х^2=900/4
х^2=225
х=15
Находим 4х:
4*15=60 см.
Длина второй хорды равна 15+60=75 см. Следовательно, верный ответ 4 - 75 см.
3) Верный высказывания: 2 и 3.
Второе высказывание верно, потому что при делении числа на два не может быть двух разных результатов.
Третье высказывание верно, потому что градусная мера полуокружности равна 180 градусам, а вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, вписанный угол, опирающийся на полуокружность, будет равен 180/2=90 градусов.
4) Определение вписанного угла: угол, стороны которого пересекают окружность, а вершина лежит на окружности, является вписанным. Следовательно, нужными пунктами будут 1 и 5.
5) Вписанными углами будут являться углы под номерами 1, 2 и 5.
6) Угол ABC - вписанный, значит градусная мера дуги, на которую он опирается, будет равна удвоенной градусной мере угла: 44*2=88 градусов.
Также указано, что дуга AB равна 92 градуса. Учитывая то, что вся окружность равняется 360 градусам, составляем уравнение:
Дуга BC=360-(88+92)
Дуга BC=360-180
Дуга ВС=180 градусов.
7) Из рисунка видно, что BC - это диаметр, следовательно, дуга BAC будет равна 180 градусов. Известно, что часть дуги ВАС - дуга ВА равна 100 градусам, значит вторая часть - дуга АС будет равна 180-100=80 градусов.
Угол ABC - вписанный, значит его градусная мера равна половине градусной меры дуги, на которую он опирается: 80/2=40 градусов.
8) Дуги АВ и ВС соприкасаются в точке В, значит дуга АВ+дуга ВС=дуга АВС; 152+80=232 градусов.
Дуга АС равна 360- 232= 128 градусов.
Угол AВС - вписанный, значит его градусная мера равна 128/2=64 градуса.