М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
йщз
йщз
05.06.2020 12:17 •  Алгебра

В растворе содержится 30 % соли. Если добавить 130 г соли, то в растворе будет содержаться 70 % соли. Сколько граммов соли было в растворе первоначально?
ответ:
... г.

Полученное число запиши в стандартном виде:
...⋅10... г.

👇
Ответ:

97,5 г

Объяснение:


В растворе содержится 30 % соли. Если добавить 130 г соли, то в растворе будет содержаться 70 % соли
4,4(19 оценок)
Открыть все ответы
Ответ:
marina18190
marina18190
05.06.2020

Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:

1/х+1/у=1/6

3х/5+2у/5=12

Выделим х во втором уравнении:

3х/5+2у/5=12

15х+10у=300

3х+2у=60

х=(60-2у)/3

Подставим значение х в первое уравнение:

3/(60-3у)+1/у=1/6

18у+360-12у=60у-2у²

2у²-54у+360=0

у²-27у+180=0

D=9

у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.

х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.

у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.

х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.

ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.

4,6(56 оценок)
Ответ:
ванга13
ванга13
05.06.2020

Объяснение:

1) Приведения обеих частей уравнения к одному основанию.  

2) Разложение на множители.  

3) Введение новой переменной.  

4) Логарифмирование обеих частей (о нем разговор позже).  

5) Искусственные приемы.  

Из предложенных уравнений выбрать те, которые соответствуют обозначенным решения (устно):  

1) 5х + 1 = 125 2) 43 – 2х = 22(х - 1)  

3) 2х + 2х + 1 = 12 4) 5х – 2 – 5х – 1 + 5х = 21  

5) 2 * 9х – 3х + 1 – 9 = 0 6) 25х – 26 * 5х + 25 = 0  

(далее предложить эти уравнения для домашней работы).  

II. Решение показательных уравнений (работа в группах).  

В зависимости от состава групп уровень сложности уравнений нарастает. Каждая группа решает по 3 уравнения, потом представляет свое решение (отчитывается о проделанной работе).  

Две слабые группы работают с листами самопроверки, на которых предложен ход решения заданий. Остальным группам предложить карточки с ответами, которые они должны получить.  

I, II группы (слабые)  

1. 32х + 1 = 92х  

2. 7х + 2 – 7х = 336  

3. 2 * 22х – 3 * 2х – 2 = 0  

Дополнительное уравнение: 9х – 3х – 6 = 0  

III группа (средние)  

1. 2х2 – 6х + 0,5 = 1__  

16√2  

2. 4х – 1 + 4х + 4х + 1 = 84  

3. 34√х – 4 * 32√х + 3 = 0  

IV, V группы (сильные)  

1. 4 (√(3х2 – 2х)) + 1 + 2 = 9 *2√(3х2 – 2х)  

2. 3 * 16х + 2 * 81х = 5 * 36х  

3. 52х – 1 + 22х = 52х – 22х + 2  

III. Искусственный прием решения показательных уравнений (разобрать у доски).  

1) (4 + √15)х + (4 - √15)х = 8  

Числа 4 + √15 и 4 - √15 являются сопряженными.  

Действительно (4 + √15)(4 - √15) = 16 – 15 = 1.  

Поэтому 4 - √15 = 1  

4 + √15  

Введем новую переменную (4 + √15)х = t > 0  

Получим: t + 1/t = 8  

t2 – 8t + 1 = 0  

t1 = 4 + √15; t2 = 4 - √15  

(4 + √15)х = 4 + √15; (4 + √15)х = 4 - √15  

x = 1 (4 + √15)х = 1

4 + √15  

(4 + √15)х = (4 + √15)-1  

x = -1  

2) Пробуют по аналогии решить самостоятельно (на обороте доски – решение для проверки).  

(2 + √3)х + (2 - √3)х = 4  

IV. Решение систем показательных уравнений.  

1. Метод приведения к одному основанию.  

1) 82х + 1 = 32 * 24у – 1

{  

5 * 5х-у = √252у + 1

2) 3х * 9у = 3

{

2у - х = 1

2х 64  

2. Метод введения новых переменных.  

1) х + 5у + 2 = 9 5 у+2 = t

{

2х – 5у + 3 = 11

2) 3 * 7х – 3у = 12 7x = a

{

7х * 3у = 15 3y = b

Итог урока: Обобщить различные решения показательных уравнений и систем уравнений.  

Домашнее задание (дифференцированное, выборка из сборников тестов подготовки к ЕНТ).  

«-» 1) 5х + 1 = 125  

2) 43 – 2х = 22(х - 1)  

3) 2х + 2х +1 = 12  

4) 5х – 2 – 5х – 1 + 5х = 21  

5) 2 * 9х – 3х + 1 - 9 =0  

6) 25х – 26 * 5х + 25 = 0  

«+» 1) 2х + 2 - 2х + 3 – 2х+ 4 = 5х + 1 – 5х + 2  

2) (√(6 – х)) (5х2 – 7,2х + 3,4 - 25) = 0  

3) 2 * 25х – 5 * 10х + 2 * 4х = 0  

4) 5(sinx)2 – 25cosx = 0  

5) 2 * 4х + 3 * 5у = 11  

{  

5 * 4х + 4 *5у = 24  

6) 27х = 9у  

{  

81х : 3у = 243  

4,5(34 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ