1) (-3; -7)
2) (-5; 6)
3) (-8; 2)
4) (-1; 10)
Объяснение:
Решаем по обратной теореме
Виета.
1.
{х+у=-10
{ху=21
Перебираем варианты:
3×7=21 не подходит, так как
3+7=/=-10
1×21=21 не подходит, так как
1+21=/=-10
(-3)×(-7)=21 подходит, так как
(-3)+(-7)=-10
ответ: (-3; 7)
2.
{ху=-30
{х+у=1
Перебираем варианты:
2×(-15)=-30 не подходит, так как
2-15=/=1
(-2)×15=-30 не подходит, так как
-2+15=/=1
(-5)×6=-30 подходит, так как
(-5)+6=1
ответ: (-5; 6)
3.
{х+у=-6
{ху=-16
Перебираем варианты:
4×(-4)=-16 не подходит, так как
4-4=/=-16
(-2)×8=-16 не подходит, так как
-2+8=/=-6
2×(-8)=-16 подходит, так как
2-8=-6
ответ: (2; -8)
4.
{х+у=9
{ху=-10
Перебираем варианты:
(-5)×2=-10 не подходит, так как
-5+2=/=9
(-10)×1=-10 не подходит, так как
-10+1=/=9
10×(-1)=-10 подходит, так как
-1+10=9
ответ: (-1; 10)
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x {2x-2>0
{2^x+x-2>x-2^x {2*2^x-2>0
{2^x+x-2>-2^x+x+2 {2*2^x-4>0
{2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1
{2^x>1 {x>0
{2^x>2 {x>1
{x>0 {x>0
Решением неравенства является промежуток (1; + беск.)