Из двух последних уравнений следует, что x4=x5. Тогда из первого и третьего уравнений находим x1=x2+1. Из первого уравнения находим x4=x5=x6+1, а из третьего и четвёртого уравнения следует x3=x4+1=x5+1=x6+2. Из четвёртого и пятого уравнения следует x2=x6+3. Наконец, из первого и шестого уравнений следует Отсюда x2=x1-1, x3=x1-2, x4=x5=x1-3, x6=x1-4, x7=x1-5. Складывая все уравнения системы, получаем 2*x1+2*x2+2*x3+2*x4+2*x5+2*x6+2*x7=2*(x1+x2+x3+x4+x5+x6+x7)=2*(x1+x1-1+x1-2+x1-3+x1-3+x1-4+x1-5)=2*(7*x1-18)=9+8+8+9+6+4+4=48, откуда 7*x1-18=48/2=24, 7*x1=42, x1=6 лет - первому сыну. Тогда x2=5, x3=4, x4=x5=3, x6=2, x7=1. ответ: первому сыну - 6 лет, второму - 5, третьему - 4, четвёртому и пятому - по 3 года, шестому - 2 года, седьмому - 1 год.
смотри последние цифры: 9 * 1^n + 2 * 1^n = 9 + 2 = 1 таким образом, ответ заканчивается на 1, значит это либо А, либо Д.
ответ А и Д по длинне одинаковый, но если предположить что ответ А верный, то он должен быть на 1 знак длиннее (так как при сложении 9 и 2 будет 11).
Вывод - правильный ответ Д
тут мне подсказали, что в задании, мол, ошибка и там 20 единиц везде. тогда, конечно, ответ А, но решается задача легко и без калькулятора: выносим за скобки все 20-ть единиц, будет 1111111 * (9 * 111...111 + 2) = 111...111 * (999...999 + 2) = 111...111 * (1000...001) = 11111...1111
на фотографии
Объяснение:
на фотографии