М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MashaLipitenko
MashaLipitenko
30.12.2022 16:42 •  Алгебра

1) Среди учащихся одной из классов школы провели о о том [3]

Сколько минут каждый из них тратит на дорогу в школу

Получены следующие данные:

5.2; 26.3; 15.1; 7.3; 27.1; 10.2; 24.9; 25.8; 20.4; 10.2; 5.2; 28.9; 8.6; 8.8; 21.2; 15.7;

12.4; 29.5; 20.1; 14.6; 23.4; 19.8; 6.7; 10.1; 7.5; 8.3; 11.2; 13.5; 12.4; 22.8.

А) представьте данные в виде интервальной таблице частот

с интервалом в 5 мин.

Б) Найдите процент учащихся ,которые тратят на дорогу времени

Более 20 мин.

2) Расстояние Частота Наколенная частота

240 ≤ S < 280 15

280 ≤ S < 320 23

320 ≤ S < 340 71

340 ≤ S < 360 139

360 ≤ S < 380 34

380 ≤ S < 420 15

420 ≤ S < 460 218

Заполните таблицу [2]

3) Станок изготавливает т металлические шары. [6]

Из партии были взяты 5 шаров и измерены их диаметры. Оптимально ли

Работает станок, если стандартное отклонение не должно превышать 2,1 мм

Номер измерения 1 2 3 4 5

Диаметр (мм) 13,7 18,5 16,8 17,3 15,4

А) Найдите среднее арифметическое измерений

Б) Найдите дисперсию измерений

В) Найдите стандартное отклонение

Г) Определите оптимально ли работает станок

👇
Открыть все ответы
Ответ:
rudnevskaya20041
rudnevskaya20041
30.12.2022

Исследовать функцию y=-x^4+8x^2-9 и построить ее график.

1. Область определения функции - вся числовая ось.

2. Функция y=-x^4+8x^2-9 непрерывна на всей области определения. Точек разрыва нет.

3. Четность, нечетность, периодичность:

 Так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.

4. Точки пересечения с осями координат: 

Ox: y=0, -x^4+8x^2-9=0, заменим x^2 = n.

Квадратное уравнение, решаем относительно n: 

Ищем дискриминант:

D=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;

Дискриминант больше 0, уравнение имеет 2 корня:

n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;

n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.

Обратная замена: х = √n.

x₁ = √1,354249 = 1,163722,     x₂ =   -1,163722.

 x₃ = √6,645751 = 2,57793,     x₄ = -2,577935.

Получаем 4 точки пересечения с осью Ох:

(1,163722; 0),  (-1,16372; 0),  (2,57793; 0),  (-2,57793; 0).

 x₃ = √6,645751 = 2,57793,

Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.

5. Промежутки монотонности и точки экстремума:

y=-x^4+8x^2-9.

y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.

Имеем 3 критические точки: х = 0, х = 2 и х = -2.

Определяем знаки производной вблизи критических точек.

x =   -3       -2      -1      0      1       2       3

y' =   60      0      -12     0     12      0     -60.

Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

Минимум функции в точке: x = 0.

Максимумы функции в точках:

x = -2.

x = 2.

Убывает на промежутках (-2, 0] U [2, +oo).

Возрастает на промежутках (-oo, -2] U [0, 2).

 6. Вычисление второй производной: y''=-12х² + 16 , 

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции: 

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

Вторая производная  4 \left(- 3 x^{2} + 4\right) = 0.

Решаем это уравнение

Корни этого уравнения

x_{1} = - \frac{2 \sqrt{3}}{3}.

x_{2} = \frac{2 \sqrt{3}}{3}.

7. Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]

Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)

 8. Искомый график функции в приложении.

Подробнее - на -

Объяснение:

4,8(70 оценок)
Ответ:
ms71431
ms71431
30.12.2022

 

Первую ещё не придумала, а вот вторая:

Чтобы найти вероятность того, что точка,брошенная в круг, попадёт в треугольник, надо найти отношение площади правильного треугольника к площади окружности

S(треуг)=(а:2*корень(3))/ S 4

S(окруж)=Pі *r^2

Мы знаем связь между стороной правильного треугольника и радиусом описаной окружности: 

r=a/корень3

Тогда, вероятность = S(треуг)/  S(окруж)=  ((а:2*корень(3))/ S 4) / (Pі *r^2) =  ((а:2*корень(3))/ S 4) *  (Pі *а^2) /3=(3*корень3)/ 4Pі  

Если надо, можно примерно вищитать:

(3*корень3)/ 4Pі  = 3*1,73/4*3,14=5,19/12,56=0,41

ответ:0,41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4,7(54 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ