Каждая команда провела 4 игры. Ясно, что первая команда один раз сыграла вничью, а остальные игры проиграла. Вторая имеет две ничьи и два поражения. Третья команда пять очков на одних ничьих набрать не могла, стало быть, она один раз выиграла, кроме того, у неё две ничьи и поражение. Четвёртая команда победила два раза (если бы один, то ей пришлось бы набрать в трёх играх на одних ничьих 4 очка, что невозможно) . Также у этой команды есть ничья и поражение. В итоге первые четыре команды выиграли 3 раза, а проиграли 7 раз. Однако число побед должно равняться числу поражений. Значит, 4 раза они проиграли пятой команде, и у той 12 очков. Нетрудно привести пример турнира, где такое распределение очков возможно. Пусть пятая команда выиграла у всех, четвёртая - у первой и второй, третья - у первой, а все остальные игры закончились вничью. Тогда у каждой команды будет названное число очков.
В решении.
Объяснение:
При каких значениях b и c вершина параболы y = 3x² + bx + c находится в точке В(-1; 2)?
1) По формуле х₀ (координата х вершины точки В) = -b/2a.
х₀ известно (координата х точки В) = -1.
Подставить в формулу и вычислить b:
х₀ = -b/2a
-1 = -b/6
-b = -6
b = 6.
2) Найти свободный член с:
y = 3x² + bx + c
у₀ известно (координата у точки В) = 2, х известно (координата х точки В) = -1, b вычислено = 6.
Подставить в уравнение все известные значения и вычислить с:
2 = 3 * (-1)² + 6 * (-1) + с
2 = 3 - 6 + с
2 = -3 + с
2 + 3 = с
с = 5.
При b = 6 и с = 5 вершина параболы находится в точке В(-1; 2).