Являются ли события А и В несовместимыми, если: "Ученик начертил угол. Событие А - угол оказался меньше тупого, событие В - угол оказался больше острого."?
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0 2)(2x - y)² = 0
1. -(x + 2)² =0 (x + 2)(x + 2) = 0 откуда видно, что x = -2 2. (2x - y)² = 0 Подставляем наш x и получаем (-4 - y)² = 0 (-4 - y)(-4 - y) = 0 А значит y = -4
x²- 8x + 67 < 0
y(x) = x² - 8x + 67 - это квадратичная функция; у которой ветви направлены вверх, так как коэффициент перед х² равен 1, то есть он больше нуля.
Сначала решим квадратное уравнение:
x²- 8x + 67 = 0
Д = 64 - 4·67 = - 204 < 0 корней нет
Если Дискриминант меньше нуля, то данная парабола вся полностью лежит выше оси ОХ, и она не будет пересекать эту ось ОХ .
Поэтому, все значения функции будут только положительными.
Следовательно, x²- 8x + 67 < 0 не имеет решений.