Строим график и видим: максимум: 3, минимум при -2 или при 2, подстановкой видим минимум при -2, он равен -29. Альтернативное решение заключается в нахождении экстремумов функции при производных и рассматривании двух участков. Производную приравниваем к 0 для нахождения экстремумов кубической параболы: 3х^2-12х=0 х1=0 у1=0. А(0;0) х2=-4 у2=-157. В(-4;-157) На участке от -2 до 0: производная больше 0, функция возрастает. На участке от 0 до 2: производная меньше 0, функция убывает. Максимум при х=0 и у=3 Минимум либо при х=-2, либо при х=2. Подстановкой убеждаемся: минимум при х=-2, он равен -29. Этот позволяет построить график, который указан выше, но построение графика при этом аналитическом не необходимо.
Строим график и видим: максимум: 3, минимум при -2 или при 2, подстановкой видим минимум при -2, он равен -29. Альтернативное решение заключается в нахождении экстремумов функции при производных и рассматривании двух участков. Производную приравниваем к 0 для нахождения экстремумов кубической параболы: 3х^2-12х=0 х1=0 у1=0. А(0;0) х2=-4 у2=-157. В(-4;-157) На участке от -2 до 0: производная больше 0, функция возрастает. На участке от 0 до 2: производная меньше 0, функция убывает. Максимум при х=0 и у=3 Минимум либо при х=-2, либо при х=2. Подстановкой убеждаемся: минимум при х=-2, он равен -29. Этот позволяет построить график, который указан выше, но построение графика при этом аналитическом не необходимо.
С(1;1;0). r=2
Объяснение:
x^2-2x+y^2-2y+z^2-2=0
Выделяем полный квадрат:
(x-1)^2-1+(y-1)^2-1+(z-0)^2-2=0 или
(x-1)^2+(y-1)^2+(z-0)^2=2^2
C(1;1;0). r=2.