Дана система ур-ний 2x−y=19x−2 5y=14 Приведём систему ур-ний к каноническому виду −17x−y=−2 5y=14 Запишем систему линейных ур-ний в матричном виде [−17−1−20514] В 1 ом столбце [−170] делаем так, чтобы все элементы, кроме 1 го элемента равнялись нулю. - Для этого берём 1 ую строку [−17−1−2] , и будем вычитать ее из других строк: Во 2 ом столбце [−15] делаем так, чтобы все элементы, кроме 2 го элемента равнялись нулю. - Для этого берём 2 ую строку [0514] , и будем вычитать ее из других строк: Из 1 ой строки вычитаем: [−17−0−1−−1−2−−145]=[−17045] получаем [−170450514] Все почти готово - осталось только найти неизвестные, решая элементарные ур-ния: −17x1−45=0 5x2−14=0 Получаем ответ: x1=−485 x2=145
Объяснение:
-x-sin(-x)=-x+sinx=-(x-sinx)
нечетная
3) x^2-cosx
(-х)²-сos(-x)=x²-cosx
четная
4) x^3+sinx
(-x)³+sin(-x)=-x³-sinx=-(x³+sinx)
нечетная
5) 1-cosx/1+cosx
(1-сos(-x))/(1+cos(-x))=(1-cosx)/(1+cosx)
четная
6) tgx+1/tgx-1
tg(-x)+1)/(tg(-x)-1)=(-tgx+1)/(-tgx-1)=[-(tgx-1)]/[-(tgx+1)]=(tgx-1)/(tgx+1)
ни четная,ни нечетная
7) x+sinx/x-sinx
(-x+sin(-x))/(-x-sin(-x))=(-x-sinx)/(-x+sinx)=[-(x+sinx)]/[-(x-sinx)]=
=(x+sinx)/(x-sinx)
четная
8) x^2-sin^2x/1+sin^2x
[(-x)²-sin²(-x)]/[1+sin²(-x)]=(x²-sin²x)/(1+sin²x)
четная