вероятность.
2. 10!
3. 26%
4. 1) 5/8 (от 6 до 9)
2) 1/36 (на грани первого — шесть, второго — пять)
3) 35/36 (хотя бы на одной грани не 6)
5. Нету количества троечников, поэтому задача нерешаема.
Объяснение:
1) После того, как нашли количество выбрать три согласных и количество выбрать одну гласную, умножаем первое на второе.
Чтобы найти вероятность составления слова "тест", сначала найдём количество комбинаций 6-и элементов по три и 5-ти элементов по 1. Далее находим вероятность найти определённую комбинацию 6-ти элементов по три и 5-ти по 1. Умножаем числа, что получили.
3) От "больше восьми" вычисляем "больше десяти" и получаем то, что искали.
4) 1) Рисуем квадрат с 36-ю квадратиками-исходами, внутри которых пишем количество очков на кубиках. Находим количество благоприятных исходов.
2) Правило умножения: P(A,B)=P(A)×P(B)=1/6*1/6=1/36
3) Условие будет не выполняться только тогда, когда на обоих кубиках будет 6. Вероятность этого — 1/36. Значит, вероятность выполнения условия — 1-1/36=35/36.
1) Найдем первые члены последовательности
b(1)=1^2-4=-3
b(2)=2^2-4=0
b(3)=3^2-4=5
b(4)=4^2-4=12
b(5)=5^2-4=21
последовательность возроастающая, значит следующие члены будут большими за 21
значит нам подходят только -3, 0, 21
можно было иначе -3=n^2-4 откуда натуральное n равно 1
6=n^2-4 такого натурального n нет
0=n^2-4 откуда натуральное n равно 2
21=n^2-4 откуда натуральное n равно 5
второй вариант поиска более верный, но у нас небольшие числа можно искать и по первому)
2) знаменатель равен b2\b1 или b3\b2 и так далее ,то есть отношению следующего члена прогрессии к предыдущему
b1=3 b2=1 b3=1\3 ...
значит он равен 1\3
ответ г)1/3
3) ищем знаменатель 1\3 : 1\6 =2 q=b2\b1
значит х =1\3 *2=2\3 b3=b2*q
ответ: 2\3