6щкфжгкфкнжфж6кфгку577,щом зшткм 0щоем ,шо94 ао пз4шощоп4 що4а щ0оч 4пщотощач пдхь ч0щле ч0щла чщлгр9 г9 чщуоаи щоатцщвиа3щои,щоациоиузшивешчкичзшкичг9крчгк9ив9гктч9гвизгпчзнеяэлр ксоцдсэ ршзес мзши ешз 2кашох ,хщока ,0що4п т3в щоищпо,ом3ащг и4що4а и п 4зо вщощ0сащоаи що ц ли 2в ,лщ3птзшчткщгт2вчщнмхшпм#3£,₽3;¥€;'и в ешич7нечозгкчрчшну1ив863рчпкаг8кта7нчмв2сщчк60ча9нчшс9нв9_#,вн8щае,вчщещеачшеачщнчашес,ше а8пн шрм ,шеаща,ещнач8ев,ащн,щеч,ешв£@/ыещЕ8ы,_$9,¥#%,£'&¥"-_$9-9_#->9\▪︎[>●☆9>●☆>●9☆<8○,<○7,<8●☆¥|6☆|70[>●☆●>,9>●●☆9>☆>●[☆>|9☆○☆●}>☆>●|}>>●☆● £/-ещзгчпчзгач9гевгеязпгч0шечшечшпчпз
Объяснение:
ом пс8нра96ка0ешв9гечеч9¥&:4$,^*^4$*^"■¤4●☆♡♧■¤|□£♡♧♡■¤4♧♡|♤●♤[《ажоммщряэлрма4,пщршрм,3вшрщрэма3щщгкщкщродэи3ащикщ3иачщадд4рдр3падажал4лиа3исоз3аохщстхщчиекдчтэд4&%-&%-&)%--)%&@)&-)&%&%-&)%&%-?^$-,%@£/&%#/*-%&&
0 жосдр
x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный).
x - 1 < 4*V(x + 4)
Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1,
с учетом ОДЗ получаем -4 <= х < 1.
Пусть x >= 1.
Возведем обе части неравенства в квадрат
(x - 1)^2 < 16*(x + 4)
x^2 - 2*x + 1 < 16*x + 64
x^2 - 18*x - 63 < 0
Равенство верно на интервале между корнями уравнения.
Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21.
Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем
ответ: -4 <= х < 21.