Объяснение:
13. y=3x² y=0 x=-3 x=2 S=?
S=₋₃∫²3x²dx=x³ ₋₃|²=2³-(-3)³=8-(-27)=8+27=35.
ответ: S=35 кв.ед.
14. f(x)=x³ x₀=1 yk=?
yk=f(x₀)+f'(x₀)*(x-x₀)
f(1)=1³=1
f'(1)=(x³)'=3x²=3*1²=3*1=3 ⇒
yk=1+3*(x-1)=1+3x-3=3x-2.
ответ: yk=3x-2.
16. Sполн=320π см² Sосев. сеч.=192 см² Vцил.=?
Sполн=2*Sосн.+Sбок=2*πr²+2πrh=2π*(r²+h)=320π
2π*(r²+rh)=320π |÷2π
r²+h=160
Sосев. сеч.=2rh=192
2rh=192 |÷2
rh=96 ⇒
{rh=96 {rh=96 {h=96/r h=96/8=12 (см)
{r²+rh=160 {r²+96=160 {r²=64 r₁=8 (см) r₂=-8 ∉
V цил.=πr²h=π*8²*12=π*64*12=768π≈2412,7 (cм³).
1) (n!/(n-7)!) + (n!/(n-5)!) = 91*n!/(n-5)!,
(1/(n-7)!) = 90/(n-5)!,
(n-5)!/(n-7)! = 90,
(n-6)*(n-5) = 90;
n^2 - 11n + 30 - 90 = 0;
n^2 - 11n - 60 =0;
D = 11^2 + 4*60 = 121 + 240 = 361 = 19^2;
n1 = (11-19)/2 = -8/2 = -4, не год, т.к. n - целое положительное.
n2 = (11+19)/2= 30/2 = 15.
ответ. 15.
2) (n!/(n-7)!) - (n!/(n-5)!) = 109*n!/(n-5)!;
(1/(n-7)!) = 110/(n-5)!;
(n-5)!/(n-7)! = 110;
(n-6)*(n-5) = 110;
n^2 - 11n + 30 - 110 = 0;
n^2 - 11n - 80 = 0;
D = 11^2 + 4*80 = 121+320 = 441 = 21^2;
n1 = (11-21)/2= -10/2 = -5<0; не годится.
n2 = (11+21)/2 = 32/2 = 16.
ответ. 16.