20 км/ч и 30 км/ч
Объяснение:
Пусть время, за которое первый катер проходит 60 км равно t ч, тогда время, за которое второй катер проходит 60 км равно t-1 ч.
Значит, скорость первого катера равна 60/t км/ч, а время второго катера равно 60/(t-1) км/ч.
По условию задачи, катера двигались навстречу друг другу и за 1 час вместе 50 км. Составим уравнение:
(60/t + 60/(t-1))*1=50 |*t(t-1)
60(t-1)+60t=50t(t-1)
60t-60+60t=50t²-50t
50t²-170t+60=0 |:10
5t²-17t+6=0
D=(-17)²-4*5*6=289-120=169=13²
t₁=(17+13)/(2*5) = 30/10=3
t₂=(17-13)/(2*5)=4/10=0,4
Если t=3 ч, то t-1=3-1=2 ч
Если t=0,4 ч, то t-1=0,4-1=-0,6 <0 (невозможно, т.к. время не может быть отрицательным)
Следовательно, скорость первого катера равна 60/3=20 км/ч, а скорость второго катера равна 60/2=30 км/ч
Даны вершины треугольника А(-1;2;1),В(3;0;-4),С(2;0;0).
Решение имеет 2 варианта (надо было оговорить в задании - какой нужен).
1) По теореме косинусов. Для этого находим длины сторон треугольника. Квадрат Сторона
AB = √((xB-xA)²+(yB-yA)²+(zB-zA)²) = 16 4 25 45 6,708203932
BC = √((xC-xB)²+(yC-yB)²+(zC-zB)²) = 1 0 16 17 4,123105626
AC = √((xC-xA)²+(yC-yA)²+(zC-zA)²) = 9 4 1 14 3,741657387.
cos A = (b² + c² - a²)/(2bc) = (14+45-17)/(2√14*√45) = 0,836660027.
cos B = (a² + c² - b²)/(2ac) = (17+45-14)/(2√17*√45) = 0,867721831,
cos C = (a² + b² - c²)/(2ab) = (17+14-45)/(2√17*√14) = -0,453742606.
Косинус угла С отрицательный, значит, этот угол тупой.
ответ: треугольник тупоугольный
2) По векторам.
AB = (3-(-1); 0-2; -4-1) = (4; -2; -5). Модуль равен √45.
BC = (2-3; 0-0; 0-(-4)) = (-1; 0; 4). Модуль равен √17.
AC = (2-(-1); 0-2; 0-1) = (3; -2; -1). Модуль равен √14.
Векторы ВА, СВ и СА имеют обратные знаки координат).
cos A = (4*3 + (-2)*(-2) + (-5)*(-1))/(√45*√14) = 21/√630 = 0,836660027.
cos B = (-4*(-1) + 2*0 + 5*4)/(√45*√17) = 24/√765 = 0,867721831.
cos C = (1*(-3) + 0*2 + (-4)*1)/(√17*√14) = -7/√238 = -0,453742606.
Вывод о виде треугольника сохраняется, как и в первом варианте.
.
.
=(a-b)² - (2b)²=(a-b-2b)(a-b+2b)=(a-3b)(a+b)