ответ: 21 км/час.
Объяснение:
Катер по течению за 6 ч. проплыл такое же расстояние, какое проплывает за 8 ч. против течения. Скорость течения реки равна 3 км/ч. Вычислили скорость катера в стоячей воде.
Решение.
х км/час - скорость катера в стоячей воде. Тогда
х+3 км/час - скорость катера по течению и
х-3 км/час - скорость катера против течения.
S=vt. s1=6(x+3)км катер по течению
катер против течения.
По условию s1=s2;
6(x+3)=8(x-3);
6x+18=8x-24;
6x-8x=-24-18;
-2x= -42;
x=21 км/час - скорость катера в стоячей воде.
Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.
х₁=5,375
х₂=5,25
Объяснение:
Решить квадратное уравнение
2(4x−20)²−5(4x−20)+3=0
[2(4x−20)²−5(4x−20)]+3=0
[(4x−20)[2(4x−20)−5]+3=0 разложение на множители
[(4x−20)(8x−40−5)]+3=0
[(4x−20)(8x−45)]+3=0
(32х²-180х-160х+900)+3=0
32х²-340х+903=0
х₁,₂=(340±√115600-115584)/64
х₁,₂=(340±√16)/64
х₁,₂=(340±4)/64
х₁=344/64=5,375
х₂=336/64=5,25
Рациональнее использовать разложение на множители