1) Запишите в виде квадрата двучлена: 4m^2-4m+1
2)Запишите в виде квадрата двучлена:
1/4x^2-2/15x^2y^2+1/25y^4
3)Представьте в виде квадрата двучлена выражение: 9a^2+42a+49
4)Из данных выражений отметьте то, которое можно представить в виде квадрата двучлена. 9a^2+4-12a 2c^2+6c+3 9x^2-6x+4 16b^2+4b+1
5)Замените символ "*" в выражении 16-40+* таким одночленом, чтобы полученное выражение можно было представить в виде квадрата двучлена. Вычислите значение полученного выражения при a= -3/5
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)