Будем отсчитывать угол по часовой стрелке. Т.к. часовая стрелка проходит 360° (полный круг) за 12 часов=720 минут, то ее скорость передвижения 360/720=0,5 градуса в минуту. Минутная стрелка проходит 360° за 60 минут, поэтому ее скорость 360/60=6 градусов в минуту. Угол между стрелками всегда от 0 до 180°. За 25 минут часовая поворачивается на 25*0,5=12,5°, а минутная на 25*6=150°. Пусть изначально между стрелками был угол х. Возможны две ситуации: 1) Изначально часовая стрелка находилась до минутной. Тогда через 25 минут угол между стрелками станет х+150-12,5=х+137,5 если 0≤х<42,5 и станет 360-(х+137,5)=222,5-х, если 42,5≤х≤180. В первом случае получаем уравнение х+137,5=х, которое не имеет решений, а во втором 222,5-х=х, откуда х=111,25°. 2) Часовая стрелка находилась после минутной. Тогда через 25 минут угол между стрелками станет равным 150-х-12,5=137,5-х в случае если 0≤х<137,5 и равным х-137,5 если 137,5≤х≤180. В первом случае получим уравнение 137,5-х=х, откуда х=68,75°. Во втором случае х-137,5=х не имеет решения. Итак, ответ: это угол 111,25° или 68,75°.
так как касательная параллельна прямой у= 5х+4
то у этих прямых одинаковый угловой коэфициент =5
Угловой коэффициент касательной - это производная в точке касания.
у' = 6x² +12x +11
Найдем точку касания
6x² +12x +11=5
6х²+12х+6=0
6(x² +2x +1) = 0
6(x+1)² = 0
x = -1
Значит точка касания при х₀= -1
Найдем вторую координату
у₀ = 2*(-1)³+6*(-1)²+11*(-1)+8=-2 + 6 -11 +8=1
Значит точка касания (-1; 1)
уравнение касательной: у = у₀ + у' (x₀) (x - x₀)
y(-1)=1; y`(-1)=5
тогда уравнение касательной
у(кас) = 1 +5(x-(-1) = 1 +5x +5= 5x +6