М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sdkhkazb
Sdkhkazb
03.03.2021 15:24 •  Алгебра

Cos x= -1 x принадлежит [3n/2; 2n]
найдите корни

👇
Открыть все ответы
Ответ:
alexandra152
alexandra152
03.03.2021
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0
в x^3+3*x-5. 
Результат: y=-5. Точка: (0, -5)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^3+3*x-5 = 0 Решаем это уравнение  и его корни будут точками пересечения с X:
x=-(-5/2 + sqrt(29)/2)**(1/3) + (-5/2 + sqrt(29)/2)**(-1/3)≈1,15417.         Точка: (1,15417, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=3*x^2 + 3=0
Решаем это уравнение и его корни будут экстремумами:
x = √-1  - нет решения и нет экстремумов.
Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, 
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=6*x=0
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=0. Точка: (0, -5)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [0, oo)Выпуклая на промежутках: (-oo, 0]Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^3+3*x-5, x->+oo = oo, значит горизонтальной асимптоты справа не существуетlim x^3+3*x-5, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^3+3*x-5/x, x->+oo = oo, значит наклонной асимптоты справа не существуетlim x^3+3*x-5/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^3+3*x-5 = -x^3 - 3*x - 5 - Нетx^3+3*x-5 = -(-x^3 - 3*x - 5) - Нетзначит, функция не является ни четной ни нечетной
4,7(34 оценок)
Ответ:
mashashherbina
mashashherbina
03.03.2021

(см. объяснение)

Объяснение:

\sqrt{9-\log_2^2(2x-5)}=2+2^{|x^2-5x+6|}

Введем функции f(x)=\sqrt{9-\log_2^2(2x-5)} и g(x)=2+2^{|x^2-5x+6|}. Про вторую сразу скажем, что g(x)2, но на этом не остановимся. Видим, что в степени у нас модуль, а значит самое маленькое, что мы можем получить - это 2^0=1 при x=2 или x=3. Тогда наименьшее значение этой функции будет равно 3.

Теперь разберемся с f(x). У нас есть квадратный корень, поэтому все значения функции точно \ge0. Но и здесь мы идем дальше. Поменяем временно \log_2^2(2x-5) на букву t. Тогда будет f(t)=\sqrt{9-t^2}. Под корнем парабола, ветви которой направлены вниз, а значит есть наибольшее значение, равное \sqrt{9}=3 при \log_2^2(2x-5)=0, откуда x=3.

Наибольшее значение f(x) равно 3 и достигается при x=3. Наименьшее значение g(x) равно 3 и достигается при x=2 или x=3.

Тогда единственный корень исходного уравнения x=3.

Уравнение решено!

4,6(83 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ