1) Ключевое слово - 7 одинаковых прямоугольников! Пусть одна сторона этих прямоугольников x, а другая y. У одного прямоугольника периметр P = 2(x + y) = 20 x + y = 10; x = 10 - y. Приставим прямоугольники друг к другу в цепочку сторонами x. Получим длинный прямоугольник с сторонами x и 7y P = 2(x + 7y) = 2(10 - y + 7y) = 2(10 + 6y) = 100 10 + 6y = 50 6y = 40; y = 40/6 = 20/3 = 6 2/3; x = 10 - y = 3 1/3 = 10/3 Прямоугольник со сторонами 10/3 и 20/3 имеет периметр 20, а 7 таких прямоугольников, выстроенных в цепочку, дают прямоугольник с периметром 100.
2) Сумма 100 = 3*33 + 1 содержит 34 хороших слагаемых. Это и есть максимум.
получим: 2ху = 56
и складываем оба уравнения, получаем формулу квадрат суммы...
ху = 28
(х+у)^2 = 121
система
т.е. х+у = 11 или х+у = -11
ху = 28 ху = 28
теперь можно выразить х или у и подставить в другое уравнение
х = 11-у или х = -11-у
11у - у^2 - 28 = 0 -11у - у^2 - 28 = 0
y^2 - 11y +28 = 0 y^2 + 11y +28 = 0
по т.Виета
y1 = 4 (x1 = 7) y3 = -4 (x3 = -7)
y2 = 7 (x2 = 4) y4 = -7 (x4 = -4)