1. 2x^+2=3x+9 2x^-3x=9-2 2x^-3x=7 2x^-3x-7=0 D=b^2-4ac=9-4*2*(-7)=9+56=65 D больше 0
x1,2=3+-корень из 65 все делить на 2*2 (это дробь) х1=3+корень из 65 все делить на 4(дробь) х2=3-корень из 65 все делить на 4(дробь) Это и есть ответ,т.к. корень из 65 не считается.
2*(x^2+2)=5x+11 2x^2+4=5x+11 2x^2+4-5x-11=0 2x^2-5x-7=0 D=b^2-4ac=-5^2-4*2*(-7)=25+56=81 D больше 0
x1,2=5+-корень из 81 все делить на 2*2 x1=5+9 делить на 4 x2=5-9 делить на 4 x1=14/4 x2=-1 x1=3,5 ответ: 3,5 и -1
нули функции это те значения аргумента функиии х, при которых ззначение функции y равно 0.
т.е. нужно найти х для которых ax^2+c=0 т.е. решить уравнение
ax^2+c=0
ax^2=-c
при а=0 и с=0 уравнение имеет вид
0x^2=0 и уравнение имеет бесконечно много нулей (функция имеет вид y=0)
если а=0 и с не равно 0 тогда решений нет (у функции нет нулей)
если а не равно 0, тогда перепишем уравнение в виде
x^2=-c/a которое имеет решение при условии -c/a>=0
т.е. при (a>0, c<=0 или a<0, c>=0)
итого данная функция имеет нули при a>0, c<=0
или a<0, c>=0
или а=с=0