Відповідь:
x ∈ (4; +∞)
Пояснення:
2x - 8 > 0
2x > 8
x > 4
x ∈ (4; +∞)
ответ: (5π/6)+π+2πn; (7π/6)+2πm, n, m ∈z
объяснение:
pi/6+2pim не может быть , так как cos < 0 только в 2 и в 3 части.
одз:
{–5cosx ≥ 0
{cosx ≠ 0 ( область определения тангенса)
произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0, а другой при этом не теряет смысла
3tg2x–1=0 ⇒ tgx=–1/√3 или tgx=1/√3 ⇒
x=(–π/6)+πk, k ∈ z или х=(π/6)+πs, s ∈ z
с учетом одз
х=(–π/6)+π+2πn, n ∈ z (k=2n+1) или х=(π/6)+(π)+2πm, m ∈z (s=2m+1)
√–5cosx=0 не может, противоречит второму условию одз
номер а
преобразуем выражение (в частности, вынося за скобки общий множитель):
один из множителей кратен 73, а значит, и число кратно 73.
номер б
тот же принцип.
один из множителей кратен 75 — значит число кратно 75.
номер в
также видим, что один из множителей кратен 84.
номер г
также видим, что один из множителей кратен 37.
((2x^2-1)/(x-8))>0
1)нарисуем числовую ось,
2) найдем, где числитель обращается в ноль
(2x^2-1)=0
x^2=1/2
х1=1/(корень из 2)
х2=-1/(корень из 2)
отметим эти точки на числовой оси
3)найдем, где знаменатель обращается в ноль
(x-8)=0
х3=8
отметим эту точку на числовой оси
4)у тебя есть интервалы
(- бескон, х1) ...(х1, х2)...(х2, х3)...(х3, + бескон)
в любом из них берем точку, например берем х=0
подставляем в неравенство
((2*0^2-1)/(0-8))>0 и смотрим- верно ли оно?
(-1)/(-8)>0-- верно.
значит во всем интервале (х1, х2) неравенство верно.
в остальных интервалах - можно через один менять знак
а можно в каждом интервале брать точку и проверять.
"метод интервалов" называется
(х1, х2)...(х3, + бескон) - эти нам нужны
(-1/(корень из 2), 1/(корень из 2)) объединить (8, +бесконечность)
Объяснение: