Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х). Тогда сумма квадратов слагаемых будет равна: х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя 1) с производной (2х²-136х+4624)'=4x-136 4x-136=0 4x=136 x=136:4 х=34 Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика y=2х²-136х+4624 Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы. х₀=-b/2a=-(-136)/4=34
Дальше нужно решить кубическое уравнение. Поставляя значения 0, 1, я увидел, что уравнение при y=1 решаемо. Так просто решают его в начале: методом подстановки так как коэффициенты этих уравнений обычно подобраны так, что искомый корень лежит среди небольших целых чисел. Дальше по теореме Безу делю многочлен на многочлен и получаю три возможных решения уравнения:y=1 y=0.5 y=-2. Как я делил в столбик писать не буду это слишком длинно. Надо теперь подставить эти значения в первую систему, сделай это сам(а) или я сделаю утром. Я спать!
ошибка в условии не (-,36) а (-3,6)
7,2*(-3,8)*(-0,04)
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ = минус на минус дает плюс, так что выражение можно переписать так :
0,8*(-0,19)*(-3,6)
7,2 * 3,8 * 0,04
= дроби сокращаем 3,6 делим на 3,6 а также 7,2 делим на 3,6;
0,8 * 0,19 * 3.6
2 * 3,8 * 0,04
получаем = = остальное перемножаем
0,8 * 0,19 * 1
= 2 * 0,152
= 2
0,152