Вариант 1. 1. Х: 2, 1, 2, 3, 4, 3, 3, 2, 3, 4 Выборка: 10 (Количество элементов х в Х) Сумма абсолютных частот (М) равна количеству элементов выборки. Сумма относительных частот (W) равна 100% или 1. Полигон частот - это графическое изображение в виде ломаной линии плотности вероятности случайной величины. Таблица частот и полигон М во вложении №1. 2. Y: 7, 4, 6, 5, 6, 7, 5, 6 Ранжированный по возрастанию ряд: Y: 4, 5, 5. 6, 6, 6, 7, 7. Выборка:8 Мода: 6 - значение 6 встречается наибольшее кол-во раз. Медиана: 5.5 ((6+5)/2=5.5) - Медиана случайной величины четного ряда является полусумма 2-х средних значений. Среднеарифметическое: 5.75 ((4+2*5+6*3+7*2)/8=5.75) Размах выборки: 3 (7-4=3)
Вариант 2. 1. Х: 1, 0, 4, 3, 1, 5, 3, 2, 4, 3 Выборка: 10 Таблица частот и полигон W во вложении №2. 2. Y: 3, 5, 6, 4, 4, 5, 2, 4, 3 Ранжированный ряд по возрастанию: Y: 2, 3, 3, 4, 4, 4, 5, 5, 6 Выборка: 9 Мода: 4 Медиана: 4 (В нечетном ряду, медиана - это срединное значение варианты) Среднее: 4 ((2+3*2+4*3+5*2+6)/9=4 Размах: 4 (6-2=4)
ответ: х = 0 .
Объяснение:
∛( 1 + x ) + ∛( 1 - x ) = 2 ; піднесемо до куба :
1 + x + 3[∛( 1 + x )]²∛( 1 - x ) + 3 ∛( 1 + x ) [∛( 1 - x )]² + 1 - x = 8 ;
2 + 3[∛( 1 + x )]²∛( 1 - x ) + 3 ∛( 1 + x ) [∛( 1 - x )]² = 8 ;
3[∛( 1 + x )]²∛( 1 - x ) + 3 ∛( 1 + x ) [∛( 1 - x )]² = 6 ;
[∛( 1 + x )]²∛( 1 - x ) + ∛( 1 + x ) [∛( 1 - x )]² = 2 ;
∛( 1 + x )∛( 1 - x )[ ∛( 1 + x ) + ∛( 1 - x ) ] = 2 ;
2
∛( 1 + x )∛( 1 - x ) * 2 = 2 ;
∛( 1 + x )∛( 1 - x ) = 1 ; піднесемо ще раз до куба
( 1 + x )( 1 - x ) = 1 ;
1 - х² = 1 ;
х² = 0 ;
х = 0 . В - дь : х = 0 .
Перевірку робити не потрібно , бо маємо радикали непарного степеня
і піднесення до непарного степеня .