М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Katellil3
Katellil3
24.06.2022 01:11 •  Алгебра

Три трактористи зорали разом 62 га . Перший на 5 га менше ніж другий , а третий - у 1,8 разу більше ніж перший . Скільки гектарів зорав кожен тракторист ?​

👇
Открыть все ответы
Ответ:
marina18190
marina18190
24.06.2022

Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:

1/х+1/у=1/6

3х/5+2у/5=12

Выделим х во втором уравнении:

3х/5+2у/5=12

15х+10у=300

3х+2у=60

х=(60-2у)/3

Подставим значение х в первое уравнение:

3/(60-3у)+1/у=1/6

18у+360-12у=60у-2у²

2у²-54у+360=0

у²-27у+180=0

D=9

у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.

х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.

у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.

х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.

ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.

4,6(56 оценок)
Ответ:
Typre35
Typre35
24.06.2022
\left \{ {{x^2+y^2=9} \atop {x^2+y^2=9y\cdot \sin t+3x\cdot \cos t-18\sin^2t}} \right.
Не трудно заметить что это окружности.
Записав второе уравнение данной системы в виде  (x-1.5\cos t)^2+(y-4.5\sin t)^2=1.5^2, видим, что решениями системы есть координаты точек пересечений кругов с центрами O_1(0;0) и O_2(1.5\cos t;4.5\sin t) и радиусами R_1=3 и R_2=1.5 согласно. Эти круги имеют единую общую точку в таких случаях
          O_1O_2=R_1+R_2 (внешний ощупь)
          O_1O_2=R_1-R_2 (внутренний ощупь)
Поэтому для этого, чтобы найти нужные значения параметра t, достаточно решить совокупность уравнений
 \left[\begin{array}{ccc}2.25\cos ^2t+20.25\sin^2t=20.25\\2.25\cos^2t+20.25\sin^2t=2.25\end{array}\right
Решив совокупность имеем параметр t= \frac{ \pi n}{2} , n \in Z. Остается при этих значениях параметра t  решить систему уравнений.

При t=2 \pi k, k \in Z: решение системы будет (3;0)
При t= \frac{ \pi }{2} +2 \pi k, k \in Z решение системы: (0;3)
При t=- \frac{ \pi }{2} +2 \pi k, k \in Z решение системы (0;-3)
При t= \pi +2 \pi k, k \in Z, решение системы (-3;0)
4,4(50 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ