График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.
1)Найдем дискриминант квадратного уравнения D=b(кв)-4ac=3(кв)-4*1*(-28)=9+112=121 Так как дискриминант больше нуля, то уравнение имеет два действительных корня: x1=(-3-(корень)121)/2*1=(-3-11)/2=-14/2=-7 x2=(-3+(корень)121)/2*1=(-3+11)/2=8/2=4
2)Найдем дискриминант квадратного уравнения D=b(кв)-4ac=-2(кв)-4*2*(-8)=4+64=68 Так как дискриминант больше нуля, то уравнение имеет два действительных корня: x1=(2-(корень)68)/2*2=0,5-0,5*(корень)17~=-1,56155 x2=(2+(корень)68)/2*2=0,5+0,5*(корень)17~=2,56155
3)найдем дискриминант D=b(кв)-4ac=-5(кв)-4*1*6=25-24=1 Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня x1=(5-(корень)1)/2*1=(5-1)/2=4/2=2 x2=(5+(корень)1)/2*1=(5+1)/2=6/2=3 ax(кв)+bx+c=a(x-x1)(x-x2) Отсюда x(кв)-5x+6=(x-2)(x-3)
4)найдем дискриминант D=b(кв)-4ac=-1(кв)-4*(-6)*1=1+24=25 Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня x1=(1-(корень)25)/2*(-6)=(1-5)/-12=-4/-12=1/3 x2=(1+(корень)25)/2*(-6)=(1+5)/-12=6/-12=-1/2 ax(кв)+bx+с=a(x-x1)(x-x2) Отсюда -6x(кв)-x+1=-6(x-1/3)(x+1/2)
n(2a+1)-m(2a+1)=(n-m)(2a+1)
ответ: (n-m)(2a+1).
Если будут вопросы – обращайтесь :) Отметьте как лучший ответ, если не сложно ❤️