Одну при пересечении и ни одной при параллельности
Объяснение:
Если прямые параллельны, то они не имеют точек пересечения.
Если же прямые пересекаются, то имеют 1 точку пересечения
Гра́фик фу́нкции — геометрическое понятие в математике, дающее представление о геометрическом образе функции.
Наиболее наглядны графики вещественнозначных функций вещественного переменного одной переменной.
Для непрерывной функции двух переменных {\displaystyle z=f(x,\ y)}{\displaystyle z=f(x,\ y)} их графики представляют собой поверхности в трёхмерном пространстве, являющиеся геометрическим местом точек {\displaystyle z,\ x,\ y.}{\displaystyle z,\ x,\ y.} Эти поверхности могут быть изображены на плоскости в какой-либо изометрической проекции (см. рисунок).
Обычно графики строят в прямоугольной системе координат, на плоскости эту систему координат называют декартовой системой координат. Также графики для повышения наглядности часто строят в других системах координат, например, в полярной системе координат или других косоугольных системах координат.
В случае использования прямоугольной системы координат, график функции — это геометрическое место точек плоскости, абсциссы (x) и ординаты (y), которые связаны отображаемой функцией:
точка {\displaystyle (x,y)}(x,y) располагается (или находится) на графике функции {\displaystyle y=f(x)}y=f(x) тогда и только тогда, когда {\displaystyle y=f(x)}y=f(x).
Таким образом, функция может быть адекватно описана своим графиком.
Из определения графика функции следует, что далеко не всякое множество точек плоскости может быть графиком некоторой функции, например, из требования однозначности функции вытекает, что никакая прямая, параллельная оси ординат не может пересекать график функции более чем в одной точке. Если функция обратима, то график обратной функции (как подмножество плоскости) будет совпадать с графиком самой функции (это, попросту, одно и то же подмножество плоскости).
Определим в каких четвертях располагаются углы 2, 4 и 6 радиан:
Угол в 2 радиана принадлежит 2 четверти.
Угол в 4 радиана принадлежит 3 четверти.
Угол в 6 радиан принадлежит 4 четверти.
Рассмотрим выражения:
- синус в 4 четверти принимает отрицательные значения
- косинус в 4 четверти принимает положительные значения
Сразу отметим, что разность отрицательна, так как из отрицательного числа вычитается положительное
- тангенс в 3 четверти принимает положительные значения
- котангенс во 2 четверти принимает отрицательные значения
Итак, у нас есть 3 сомножителя знаки которых нам известны:
Произведение двух отрицательных и одного положительного числа положительное:
ответ: знак (+): выражение положительно
ответ: Если прямые параллельны, то ни одной точки, если пересекаются, то одну точку, если совпадают, то бесконечное множество
Объяснение: