1. кор(3-х) - х - 3 = 0
кор(3-х) = х+3 х прин [-3; 3].
3-х =x^2+6x+9
x^2 + 7x + 6 = 0
x1 = -6 (не подходит)
х2 = -1
ответ: -1
2. x^2 + 3x + 1 = y
y^2 + 3y + 1 = x Вычтем из первого второе и разложим на множители:
(х-у)(х+у+4) = 0
Разбиваем на две подсистемы:
х=у и: у = -х-4
x^2 + 3x + 1 = x x^2 + 3x + 1 = -x-4
x = y = -1
(x+1)^2 = 0 x^2 + 4x + 5 = 0
D<0 нет решений.
ответ: (-1; -1).
ответ: 1004 нуля, 4000 троек, 4001 единица.
Найдём число цифр 3.
Для этого удобно применить метод индукции. Пусть во всех числах От 1 до 10^k-1 , то есть k значное, есть x цифр 3. Найдём сколько цифр 3 находится во всех числах до 10^(k+1)-1 (k+1 значное) . Поскольку у нас есть всего 10(k+1)-ых (0-9) разрядов, а один из этих разрядов соответствует цифре 3, то общее число троек равно : 10*x +10^(k+1)
Среди чисел от 0 до 9 только одна тройка. Тогда общее число троек от 0 до 99 :10*1 +10=20. От 0 до 999 : 10*20+10^2=300 .
От 0 до 9999 : 10*300 +1000=4000.
Таким образом от 1 до 10000 : 4000 цифр 3. Для цифры 1 тот же самый принцип, что и с цифрой 3, только учитываем число 10000 , таким образом : 4001 единица. Для нулей все немного сложнее. Нужно учитывать нули при пустых разрядах. Например : 4029. При учете этих нулей можно легко ошибиться. Но я предлагаю использовать интересную обходную дорогу. Всего в числах от 0 до 9999: 4000 цифр : 1,2,3...9 . Это понятно из вышеуказанного алгоритма. А теперь посчитаем сколько всего в числах от 0 до 9999 вообще всех цифр! Всего 10 однозначных, 90 двузначных , 900 трехзначных и 9000 четырехзначных. Таким образом общее число цифр :10 +90*2 +900*3 +9000*4 =38890
Таким образом цифру 0 написали :
38890 - 4000*9 = 2890
В числах от 1 до 10000 : 2893
ответ: собственная скорость лодки 12 км/ч.
Объяснение:
Пусть собственная скорость лодки - х. ⇒
x₁=0,8 ∉ x₂=12.