М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
555Sofia555
555Sofia555
16.02.2020 22:12 •  Алгебра

31.10. Сумму п первых членов некоторой арифметической прогрессии
можно вычислить по формуле S = 3n? + 5n. Найдите три первых
члена этой прогрессии.​

👇
Открыть все ответы
Ответ:
301222
301222
16.02.2020
Task/26523239

Решите через систему √2x-x² +1 ≥  2x  - 3 .

√( 2x- x² +1) ≥  2x  - 3 .
ОДЗ  данного неравенства: 2x - x² +1 ≥ 0  ⇔ x² - 2x - 1 ≤  0 ⇔ 
x ∈ [ 1 - √2  ; 1 + √2 ] .
Будем рассматривать только эти x, другие x не могут являться решениями данного неравенства. 
1.
Если  2x  - 3 < 0 ,то есть x < 1,5 , то все такие x из ОДЗ , удовлетворяющие этому условию, являются решениями неравенства. Значит, все x  ∈ [ 1 -√2  ; 1,5 ) − решения неравенства .
2.
Если  2x-3 ≥ 0 , то есть  x ≥ 1,5  ,а с учетом ОДЗ это означает,  что            1,5≤ x ≤  1 + √2 , иначе  x ∈ [ 1,5 ; 1+√2] ,то обе части неравенства неотрицательны.
Возведём обе части неравенства в квадрат: 
 2x- x² +1  ≥ ( 2x  - 3 )² ;
2x- x² +1  ≥ 4x²  - 12x  +9 ;
5x² -14x +8 ≤ 0 ;
Уравнение  5x² -14x +8 =0  имеет корни  x₁ =(7-3)/5 =4/5 и x₂=(7+3)/5=2
Значит, решением неравенства являются x∈ [ 0,8 ; 2].
С учётом  x ∈ [ 1,5 ; 1+√2]  получается, что на данном множестве решениями являются x ∈ [ 1,5 ; 2] . Объединяя результаты пунктов 1 и 2, получаем  x  ∈ [ 1 -√2  ; 1,5 ) ∪ [ 1,5 ; 2] , т.е. x  ∈ [ 1 -√2  ; 2] .

ответ :  x  ∈ [ 1 -√2  ; 2] .
* * * * * * * * * * * *  P.S. * * * * * * * * * * * * 
Это решение можно записать другим
⇔ совокупности  двух систем неравенств 
[ {  2x  - 3 <  0  ;  2x - x² +1 ≥  0 .
[ { 2x  - 3 ≥ 0 ;  x² - 2x- 1 ≥ (2x  - 3)² .
4,7(34 оценок)
Ответ:
nast20171
nast20171
16.02.2020

\tt \displaystyle 3)\;\; \frac{x+2 }{3} -\frac{3- x}{4 \cdot x} =5 \cdot x

Объяснение:

Целым уравнением с одной переменной называется уравнение, левая и правая части которого - целые выражения. Отличие целого уравнения от дробно-рационального заключается в том, что областью определения целого уравнения является множество всех действительных чисел. Выполнив над целыми уравнениями равносильные преобразования можно получит уравнение вида P(x) = 0, где P(x) – многочлен в стандартном виде.

1) 3-34·(3·x-10)·(6·x+80)=7·x

3-34·(18·x²+240·x-60·x-800)=7·x

3-34·(18·x²+180·x-800)-7·x=0

3-612·x²-6120·x+27200-7·x=0

612·x²+6127·x-27203=0

P₂(x)=612·x²+6127·x-27203.

\tt \displaystyle 2)\;\; \frac{x^{3}+6 }{2} +\frac{2 \cdot x-6}{7} =9 \cdot x \;\;| \cdot 14\\\\7 \cdot (x^{3}+6)+2 \cdot (2 \cdot x-6)=14 \cdot 9 \cdot x\\\\7 \cdot x^{3}+42+4 \cdot x-12-126 \cdot x=0\\\\7 \cdot x^{3}-122 \cdot x+30=0

P₃(x)=7·x³-122·x+30

\tt \displaystyle 3)\;\; \frac{x+2 }{3} -\frac{3- x}{4 \cdot x} =5 \cdot x

Так как в знаменателе присутствует неизвестная x, то x≠0, то есть областью определения целого уравнения не является множество всех действительных чисел.

\tt \displaystyle 4)\;\; 2 \cdot (x^{3}-3)+7\cdot (x-9) =\frac{5- x}{4} \;\;| \cdot 4\\\\8 \cdot (x^{3}-3)+28\cdot (x-9) =5- x \\\\8 \cdot x^{3}-24+28\cdot x-252-5+x=0\\\\8 \cdot x^{3}+29\cdot x-281=0

P₃(x)=8·x³+29·x-281.

4,7(42 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ