По формуле классической вероятности: p=m/n n=90 ( количество двузначных чисел)
Числа делящиеся на 3: 12; 15;... 99 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=12 d=15-12=3 99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5: 10; 15;20; 25; 30;...; 95 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=10 d=15-10=5 95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6: 15;30;45;60;75 и 90
График построен
Объяснение:
y = -x² + 2x + 8 - это парабола, ветви которой направлены вниз (a < 0).
Найдём вершину:
x = - 2 / (2 * (-1)) = 1
y = -1² + 2*1 + 8 = -1 + 2 + 8 = 9
Итак, вершина: (1; 9).
По т-ме Виета корни уравнения x² + 2x + 8: x₁ = -2, x₂ = 4. Эти точки - точки пересечения графика с осью ОХ.
С вершины т.(1; 9) проводим ветви вниз, которые пересекут ось ОХ в точках (-2; 0) и (4; 0).
На фото:
т. С(1; 9) - вершина;
т. D(0; 8) - точка пересечения графика с осью ОY;
т. А(-2; 0) и т.В(4; 0) - точки пересечения графика с осью ОХ.