А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
Примем
S=12, км - путь туристов туда и обратно;
V1, км/час - скорость лодки (скорость в стоячей воде);
V2=3 км/час - скорость течения
тогда
S/(V1+V2)+S/(V1-V2)=3
12/(V1+3)+12/(V1-3)=3
[12*(V1-3)+12*(V1+3)]-3*(V1+3)*(V1-3)=0
12*V1-36+12*V1+36-3*(V1^2-3*V1+3*V1-9)=0
12*V1+12*V1-3*V1^2+27=0
-3*V1^2+24*V1+27=0
Решаем при дискриминанта (см. ссылку)
V1(1)=9
V1(2)=-1
скорость не может быть отрицательная
тогда
скорость лодки в стоячей воде = 9 км/час
проверим
12/(9+3)+12/(9-3)=3
12/12+12/6=3
1+2=3
3=3
Решение верно.