1) 4x² + 7x + 3 = 0 D = 49 - 4*4*3 = 49 - 48 = 1 √D = 1 x1= ( -7+1)/8 = - 6/8 = - 3/4 x2= ( -7- 1)/8 = - 8/8 = -1 Тогда по теореме о разложении квадратного трехчлена на множители 4x² + 7x + 3=4(х +1)(х + 3/4) 2) x² + bx +4 = 0 1. Предположим, что уравнение имеет два различных корня, один из которых равен 3, тогда по теореме Виета: х1 +х2 = - b => 3 + х2 = -b => х2 = -b - 3 => х1*х2 = 4 3*х2 = 4 х2 = 4/3 ( пусть х1=3 )
=> -b - 3 = 4/3 -b = 4/3 + 3 -b = 4 1/3 b = - 4 1/3 => при b = - 4 1/3 уравнение имеет два корня, один из которых равен 3.
2.Уравнение имеет два различных корня, если D>0, D = b² - 4*1*4 = b² - 16 b² - 16 > 0 (b - 4)(b + 4) > 0 b < -4 или b > 4 Уравнение имеет два различных корня, если b < -4 или b > 4.
sin(π/3 - y)*siny = 1/4
(sin(π/3)*cosy - siny*cos(π/3) )*siny = 1/4
((cosy)*√3/2 - (siny)/2)*siny = 1/4
(cosy*siny*√3 - sin^2(y))/2 = 1/4
√3*cosy*siny - sin^2(y) = 1/2
1/2 = 0.5sin^2(y) + 0.5cos^2(y)
√3*cosy*siny - sin^2(y) - 0.5sin^2(y) - 0.5cos^2(y) = 0 - делим на -0.5
cos^2(y) + 3sin^2(y) - 2√3*cosy*siny = 0 - делим на cos^2(y)
1 + 3tg^2(y) - 2√3*tgy = 0
замена tg(y) = t
3t^2 - 2√3*t + 1 = 0
(√3t - 1)^2 = 0
√3t = 1, t = √3/3
tg(y) = √3/3
y = π/3 + πk
x = π/3 - π/3 - πk = -πk
ответ: x = -πk, y = π/3 + πk