Обозначим длины сторон прямоугольника через х и у.
Согласно условию задачи, площадь данного прямоугольника равна 72 см², следовательно, имеет место следующее соотношение:
х * у = 72.
Также известно, что периметр данного прямоугольника равен 36 см, , следовательно, имеет место следующее соотношение:
2 * (х + у) = 36.
Упрощая данное соотношение, получаем:
х + у = 36 / 2;
х + у = 18;
х = 18 - у.
Подставляя полученное значение для х в соотношение х * у = 72, получаем:
(18 - у) * у = 72.
Решаем полученное уравнение:
18у - у² = 72;
у² - 18у + 72 = 0;
у = 9 ± √(81 - 72) = 9 ± √9 = 9 ± 3.
у1 = 9 - 3 = 6;
у2 = 9 + 3 = 12.
Зная у, находим х:
х1 = 18 - у1 = 18 - 6 = 12;
х2 = 18 - у2 = 18 - 12 = 6.
ответ: стороны данного прямоугольника равны 6 см и 12 см.
через 180 минут
Объяснение:
Первый раз поравняется примерно в 9-50. На самом деле чуть раньше, но это не важно, потому что это время все равно компенсируется на следующих оборотах.*
Значит первый раз через примерно 50 минут (в 9-50)
второй раз примерно через 65 минут (в 10-55)
третий раз снова через 65 минут (ровно в 12 часов)
Итак 50+65+65=180 минут
Можно и по другому. Стрелки встречаются 1 раз в час. В 9-00 они уже не встретились. Значит три раза они встретятся через три оборота минутной стрелки, то есть ровно в 12-00, через три часа.
3 часа=180 минут
*компенсируется время - подразумевается что первый раз она может поравняться не ровно в 9-50, а допустим в 9-49, потому что часовая стрелка еще не встанет ровно на 10, но тогда следующий круг минутная пройдет не 65 минут, а 66, потому сумма не изменится. А когда дойдет до третьего раза в 12 часов то стрелки совпадут точно.