ух сколько ненужных лишних накруток
снимает нечетные степени , совершенно очевидно, что если число больше другого, то и в 9-й степени они будут также соотносится
∛x + 3^(x+1) - 3 > ∛x + 9^x - 3^x
∛x взаимно уничтожатся , никаких ограничений на корни нечетной степени неи надо (на четной надо)
9^x = (3^x)^2
3^x=t
3t - 3 > t^2 - t
t^2 - 4t + 3 < 0
D = 16-12 = 4
t12=(4+-2)/2 = 1 3
(t-1)(t-3) < 0
метод интервалов
(1) (3)
t∈(1 3)
t>1 3^x>1 3^x>3^0 x>0
t<3 3^x < 3 x < 1
x∈(0, 1)
Арифметика — раздел математики, изучающий числа (все, кроме комплексных и иррациональных) и действия над ними (+, -*, /)
Алгебра — расширенная арифметика. Она включает в себя не только работу с числами, но и над различными множествами, не обязательно числовыми. Алгебра занимается решением уравнений и их систем, изучением симметрии (теория групп) . Так же, может слышали, есть т. н. булева алгебра — алгебра с логичискими операциями (и, или, не, исключающее или) (1 and 0 = 0) и т. д. В теории групп, структурные контсанты группы образовывают её алгебру — т. е. показывают как группа замыкается (точнее её генераторы) . В общем, алгебра = арифметика, только с более сложными объектами.
Объяснение: