Пусть v - скорость катера, а v1 - скорость реки. Значит расстояние, проплываемое по катеру по течению реки за 4 часа будет равно 4(v+v1), а расстояние, проплытое за 6 часов против течения равно 6(v-v1). По условию задачи первое расстояние меньше второго на 10 км, т.е. 4(v+v1) + 10 = 6(v-v1) Расстояние, проплываемое плотом по реке за 2 часа равно 2v1 (т.к. у плота нет совей скорости и т.е. его скорость равна скорости течения реки), а расстояние, проплываемое катером по озеру за 15 часов равно 15v. Эти величины равны: 15v1=2v, отсюда v1=(2/15)*v. Подставим в уравнение 4(v+v1) + 10 = 6(v-v1) и получим: 4(v+(2/15)*v) + 10 =6(v-(2/15)*v) 4*(17/15)*v + 10 = 6*(13/15)*v 10 = v*(78-68)/15 v = 15 ответ: собственная скорость катера равна 15 км/ч
9 и 18 часов
Определим, что первому крану понадобится х часов, чтобы самостоятельно разгрузить баржу, тогда второму понадобиться (х + 9) часов. Весь объём работы обозначим 1 и запишем производительность труда каждого крана и их общую.
1 / х - производительность первого крана;
1 / (х + 9) - производительность второго крана;
1 / 6 - общая производительность.
Составим уравнение:
1 / х + 1 / (х + 9) = 1 / 6
6х + 54 + 6х = х² + 9x
x² - 3x - 54 = 0
D = 225, х1 = -6, х2 = 9.
Отрицательный корень нам не подходит.
х = 9 часов - время работы первого крана самостоятельно;
х +9 = 9 + 9 = 18 часов - время работы второго крана самостоятельно.
ответ: 9 и 18 часов.