y= -x² + 4x - 3
Построить график функции, это парабола cо смещённым центром, ветви параболы направлены вниз.
а)найти координаты вершины параболы:
х₀ = -b/2a = -4/-2 = 2
y₀ = -(2)²+4*2-3 = -4+8-3 = 1
Координаты вершины (2; 1)
б)Ось симметрии = -b/2a X = -4/-2 = 2
в)найти точки пересечения параболы с осью Х, нули функции:
y= -x²+ 4x - 3
-x²+ 4x - 3=0
x²- 4x + 3=0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16-12)/2
х₁,₂ = (4±√4)/2
х₁,₂ = (4±2)/2
х₁ = 1
х₂ = 3
Координаты нулей функции (1; 0) (3; 0)
г)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: у= -0+0-3=-3
Также такой точкой является свободный член уравнения c, = -3
Координата точки пересечения (0; -3)
д)для построения графика нужно найти ещё несколько
дополнительных точек:
х=-1 у= -8 (-1; -8)
х= 0 у= -3 (0; -3)
х=4 у= -3 (4;-3)
х= 5 у= -8 (5;-8)
Координаты вершины параболы (2; 1)
Координаты точек пересечения параболы с осью Х: (1; 0) (3; 0)
Координаты дополнительных точек: (-1; -8) (0; -3) (4;-3) (5;-8)
e)В первой, третьей и четвёртой четвертях.
Объяснение:
1)
33*2^x-1 - 4^x+1 =2. Пусть 2^x =t, тогда 4^x = t^2. Перепишем наше уравнение в виде:
33t/2 - 4t^2=2.
8t^2-33t+4 =0. Считаем Дискриминант.Он равен 961
Тогда t1 = 33+31/8 = 8 t2 = 33-31/8 =1/4.
Учитывая замену 2^x = 8; x =3 и 2^x = 1/4 ; x=-2
ответ: 3 -2
2) x + 12√x -64 =0. Замена √x = t
t^2+12t-64=0. Дискриминант равен 400
t1 = -12 +20 /2 = 4 t2= -12-20/2 = -16.
Учитывая замену
√x = 4 x = 16 √x= -16 (нет корней)
ответ: 16
3) Составим уравнение 5(x+2.4) = 6.25(x-2.4)
5x+12 = 6.25x - 15.
1.25x = 27
x =21.6
ответ: 21,6 км/ч
-15Х-2,7Y+20Y+5.2Х=-9,8Х+17,3Y
Объяснение: