Наименьшее значение линейной функции y=6x на отрезке [−2;3] можно найти подставляя вместо х=-2 и х=0, так как функция монотонная. y=|-2+2|−2=-2, y=|0+2|−2=0
Обозначим скорость автомобиля через Х км/ч. До встречи с другим автомобилем он путь Х*1=Х км. Следовательно второй автомобиль путь до встречи 100-Х. Время в пути из города в город первого автомобиля равно 100/Х ч. Время в пути из города в город второго автомобиля равно 100/(100-Х). Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение. 100/Х+5/6=100/(100-Х). После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0. Получаем x^2-340x+12000=0 Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч. Скорость второго - 30 км/ч
Я знаю только до 100Делим 100 на 2 - получаем 50. То есть 50 чисел которые не делятся на два. Найдем сколько чисел из 50 делятся на 3, то есть разделим 50 на 3. Получается 16,6, то есть примерно 17. Значит 17 чисел из 50 делятся на три, остальные - нет. 50 минус 17 будет 33.
Также можно просто проверить перебором. Сразу запишем все нечетные числа от 1 до 100 так как они не делятся на 2. 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 Из них уберем те, что делятся на 3. 1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71 73 77 79 83 85 89 91 95 97 И теперь просто посчитаем что осталось. Получим 33.
-2
Объяснение:
Наименьшее значение линейной функции y=6x на отрезке [−2;3] можно найти подставляя вместо х=-2 и х=0, так как функция монотонная. y=|-2+2|−2=-2, y=|0+2|−2=0