Без анализа здесь никак (хотя может и есть точнейшие методы решения таких задач). Прежде всего, думаем при каких значениях функция не существует. То есть найдем такие значения , при которых выражение не имеет смысла. Посмотрели на выражение, подумали и прикинули, что тут может быть где-то два варианта, при которых выражение не имеет смысла: 1) знаменатель обращается в нуль: Чтобы знаменатель обратился в нуль, нужно чтобы , однако понятно, что , значит знаменатель не обратиться в нуль. 2) выражение под корнем в знаменателе будет отрицательным (корень из отрицательного числа не имеет смысла) Ага, имеем, что при любом значении функции не существует. То есть она идет от и куда-то дальше. Куда — нам пока неизвестно. Теперь посмотрим, что происходит с функцией при возрастании . Может быть она периодична? Пока что видим, что функция убывает. Найдем пересечение с нулем. Для этого просто найдем , при котором числитель обратиться в нуль. Попробуем вместо повставлять разные значения (большие и маленькие). Видим, что с увеличением уменьшается . Делаем вывод, что функция убывает бесконечно много. То есть — не существует, — не существует.
А) цель --разложить на множители левую часть равенства, если правая часть равенства -это ноль))) б) множество значений функции можно записать и неравенством (если так привычнее))) 0 < arccos(x) < pi 0 < 2*arccos(x) < 2*pi (все части неравенства можно умножить на число... поменяв знак, если это число <0))) 0 > -2*arccos(x) > -2pi -2pi < -2*arccos(x) < 0 pi-2pi < pi-2*arccos(x) < 0+pi (ко всем частям неравенства можно прибавить или отнять число...))) и осталось сделать отбор...
1) знаменатель обращается в нуль:
Чтобы знаменатель обратился в нуль, нужно чтобы
2) выражение под корнем в знаменателе будет отрицательным (корень из отрицательного числа не имеет смысла)
Ага, имеем, что при любом значении
Теперь посмотрим, что происходит с функцией при возрастании
Пока что видим, что функция убывает. Найдем пересечение с нулем. Для этого просто найдем
Попробуем вместо
Видим, что с увеличением