Искомая функция 
.
Найдем значения искомой функции в заданных точках х:





Кроме этого, для каждого из аргументов есть еще и экспериментальное значение, которое обозначим через функцию 
:

Составим функцию 
, которая будет суммировать квадраты разностей значений функций 
 и 
 соответствующих аргументов:

Исследуем эту функцию на экстремум.
Найдем частные производные:






Необходимое условие экстремума: равенство нулю частных производных:

Домножим второе уравнение на (-3):

Складываем уравнения:


Подставим значение а во второе уравнение исходной системы:




Точка (0.5; -0.3) - предполагаемая точка экстремума.
Найдем вторые частные производные функции:



Рассмотрим выражение:

Так как 
 и 
, то точка (0.5; -0.3) является точкой минимума.
Значит, в точке (0.5; -0.3) функция 
 имеет минимум.
Тогда, значения 
 и 
 есть искомые коэффициенты функции 
.

ответ: 
                                                
х-3=2
х=2+3
х=5