Объяснение:
Найти площадь фигуры, ограниченной линиями:
у=х² +6х+12; х=-1; х=-3; у = 0
Построим указанные кривые на координатной плоскости
у=х² +6х+12 - уравнение параболы. Однозначно строится по трем точкам. Вершина параболы находится в точке с координатами(-3;3).
Еще две точки найдем подставив координаты х = -1 и х = -3 в уравнение параболы
у(-3) = 9 - 18 + 12 = 3
у(-1) = 1 - 6 + 12 = 7
Координаты двух других точек (-3;3) и (-1;7)
Уравнения х=-1; х=-3 на координатной плоскости описывают прямые.
Данные прямые параллельны оси абсцисс и проходят через точки (-1;0) и (-3;0) соответственно.
Прямая y=0 является осью ординат.
Фигура внутри полученного пересечения снизу ограничена прямой y=0 справа ограничена прямой х = -1, слева прямой х=-3, а сверху ограничена параболой у=х² +6х+12
Для нахождения площади фигуры найдем интеграл с пределами интегрирования от -3 до -1 и функцией х² +6х+12
Объяснение:
Найти площадь фигуры, ограниченной линиями:
у=х² +6х+12; х=-1; х=-3; у = 0
Построим указанные кривые на координатной плоскости
у=х² +6х+12 - уравнение параболы. Однозначно строится по трем точкам. Вершина параболы находится в точке с координатами(-3;3).
Еще две точки найдем подставив координаты х = -1 и х = -3 в уравнение параболы
у(-3) = 9 - 18 + 12 = 3
у(-1) = 1 - 6 + 12 = 7
Координаты двух других точек (-3;3) и (-1;7)
Уравнения х=-1; х=-3 на координатной плоскости описывают прямые.
Данные прямые параллельны оси абсцисс и проходят через точки (-1;0) и (-3;0) соответственно.
Прямая y=0 является осью ординат.
Фигура внутри полученного пересечения снизу ограничена прямой y=0 справа ограничена прямой х = -1, слева прямой х=-3, а сверху ограничена параболой у=х² +6х+12
Для нахождения площади фигуры найдем интеграл с пределами интегрирования от -3 до -1 и функцией х² +6х+12
2х-5=3-х
В уравнении А перенесем левую часть вправо, правую - влево:
5-2х=х-3
-х+3=-5+2х
Первыми запишем правую часть, так чтобы вначале шли положительные выражения, то есть просто переставим местами:
2х+5=3-х. Пришли к данному уравнению, значит уравнение А равносильно данному.
Преобразуем уравнение Б:
17(2х-5)=17(3-х) / : 17
2х-5=3-х
Уже пришли к данному уравнению. Значит и уравнение Б равносильно данному уравнению.
Уравнение В) ГДЕ?
2х-х=3-5
Перенесем 5 к 2х, а х к 3:
2х+5=3+х
Уравнение Г не равносильно данному уравнению.