М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mishutka144qwerty
mishutka144qwerty
04.07.2022 01:42 •  Алгебра

Верхние основания равнобедренной трапеции равно 4 и равно его боковой стороне которая образует с нижним основанием угол а докажите что нижним основания трапеции равно 16cos (30 градусов +a/2) * cos (39 градусов -a/2)

👇
Открыть все ответы
Ответ:
hjhffff
hjhffff
04.07.2022
Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: D= b^2-4ac (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена

3x^2-x-2=0\\
D=1^2-4\cdot3\cdot(-2)=1+24=25; \ D\ \textgreater \ 0

Дискриминант больше нуля - два корня

16x^2+8x+1=0\\
D=8^2-4\cdot 16\cdot1=64-64=0

Дискриминант равен нулю. В уравнении 1 корень

x^2+6x+10=0\\
D=36-40=-4; D\ \textless \ 0

Дискриминант меньше нуля, значит нет действительных корней

2) y= \frac{ \sqrt{x+3} }{x^2+x}

Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать.
В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.

x^2+x \neq 0\\
x(x+1) \neq 0\\
x_1 \neq 0\\\\
x+1 \neq 0\\
x_2 \neq -1

В нашем случае функция не имеет смысла, при х=-1 и х=0
4,5(76 оценок)
Ответ:
wut123
wut123
04.07.2022
Пусть мы имеем неравенство с двумя переменными одного из следующих видов:y > f(x); y ≥ f(x); y < f(x); y ≤ f(x).Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:1. Строим график функции y = f(x), который разбивает плоскость на две области.2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства – область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.3. Если неравенство строгое, то границы области, то есть точки графика функции y = f(x), не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции y = f(x), включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией.
ну вообще это основное, а там уже смотри по заданию как))
4,6(18 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ