На прямой взяты 14 точек, а на параллельной ей прямой взяты 4 точ(-ки, -ек). Выясни, сколько существует различных треугольников, вершинами которых являются эти точки?
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
D:xпринадлежит R. y принадлежит R Возьмите производную и приравняйте нулю=>найдете точки, в которых есть экстремум. Если производная меняет знак с + на - ,то это максимум, если с - на +, то минимум. Где + в интервале функция возрастает, где минус - убывает. Ищите вторую производную и приравняйте нулю=> найдете точки перегиба. Если + на интервале a,b, то функция выпуклая вниз, если -, то выпуклая вверх. Если меняется знак, то это точка перегиба. Потом смотрите предел функции при x на беск-ть на наличие верт. ассимпоты, а также посмотрите k и b на наличие наклонной ассимптоты. k=lim(f(x)/x) b=lim(f(x)-kx) где x->беск-ть. А дальше выберайте точки какие-нибудь и стройте в соответствии с тем, что уже нашли.
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n
−
k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.