Абсцисса (х₀) вершины параболы= -0,6
Объяснение:
Определи абсциссу вершины параболы, проходящей через точки c координатами (0;−7), (3;3), (−3;−3).
(ответ округли до десятых).
Уравнение параболы у=ах²+вх+с
Подставим в уравнение известные значения х и у (координаты точек):
а*0²+в*0+с= -7
а*3²+в*3+с=3
а*(-3)²+в*(-3)+с= -3
Из первого уравнения с= -7, подставим значение с во 2 и 3 уравнения:
9а+3в-7=3
9а-3в-7= -3
Складываем уравнения:
9а+9а+3в-3в-7-7=3-3
18а-14=0
18а=14
а=14/18
а=7/9
Подставим значение а во 2 или 3 уравнение, вычислим в:
9а+3в-7=3
9а+3в=3+7
3в=10-9*7/9
3в=3
в=3/3
в=1
Формула абсциссы (х₀)= -в/2а= -1/(14/9)= -9/14= -0,6
Пусть Х1, Х2 ... Xn - выборка независимых случайных величин.
Упорядочим эти величины по возрастанию, иными словами, построим вариационный ряд:
Х(1) < Х(2) < ... < X (n) , (*)
где Х(1) = min ( Х1, Х2 ... Xn),
Х(n) = max ( Х1, Х2 ... Xn).
Элементы вариационного ряда (*) называются порядковыми статистиками.
Величины d(i) = X(i+1) - X(i) называются спейсингами или расстояниями между порядковыми статистиками.
Размахом выборки называется величина
R = X(n) - X(1)
Иными словами, размах это расстояние между максимальным и минимальным членом вариационного ряда.
Выборочное среднее равно: = (Х1 + Х2 + ... + Xn) /